WIRE: Wavelet Implicit Neural Representations

Vishwanath Saragadam, Daniel LeJeune, Jasper Tan, Guha Balakrishnan, Ashok Veeraraghavan, Richard G. Baraniuk

Research output: Contribution to conferencePaperpeer-review

79 Scopus citations

Abstract

Implicit neural representations (INRs) have recently advanced numerous vision-related areas. INR performance depends strongly on the choice of activation function employed in its MLP network. A wide range of nonlinearities have been explored, but, unfortunately, current INRs designed to have high accuracy also suffer from poor robustness (to signal noise, parameter variation, etc.). Inspired by harmonic analysis, we develop a new, highly accurate and robust INR that does not exhibit this tradeoff. Our Wavelet Implicit neural REpresentation (WIRE) uses as its activation function the complex Gabor wavelet that is well-known to be optimally concentrated in space–frequency and to have excellent biases for representing images. A wide range of experiments (image denoising, image inpainting, super-resolution, computed tomography reconstruction, image overfitting, and novel view synthesis with neural radiance fields) demonstrate that WIRE defines the new state of the art in INR accuracy, training time, and robustness.

Original languageEnglish (US)
Pages18507-18516
Number of pages10
DOIs
StatePublished - 2023
Event2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023 - Vancouver, Canada
Duration: Jun 18 2023Jun 22 2023

Conference

Conference2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023
Country/TerritoryCanada
CityVancouver
Period6/18/236/22/23

Keywords

  • Deep learning architectures and techniques

ASJC Scopus subject areas

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'WIRE: Wavelet Implicit Neural Representations'. Together they form a unique fingerprint.

Cite this