TY - GEN
T1 - Use of functional near-infrared spectroscopy to monitor cortical plasticity induced by transcranial direct current stimulation
AU - Khan, Bilal
AU - Hervey, Nathan
AU - Stoweb, Ann
AU - Hodics, Timea
AU - Alexandrakis, George
PY - 2013
Y1 - 2013
N2 - Electrical stimulation of the human cortex in conjunction with physical rehabilitation has been a valuable approach in facilitating the plasticity of the injured brain. One such method is transcranial direct current stimulation (tDCS) which is a non-invasive method to elicit neural stimulation by delivering current through electrodes placed on the scalp. In order to better understand the effects tDCS has on cortical plasticity, neuroimaging techniques have been used pre and post tDCS stimulation. Recently, neuroimaging methods have discovered changes in resting state cortical hemodynamics after the application of tDCS on human subjects. However, analysis of the cortical hemodynamic activity for a physical task during and post tDCS stimulation has not been studied to our knowledge. A viable and sensitive neuroimaging method to map changes in cortical hemodynamics during activation is functional near-infrared spectroscopy (fNIRS). In this study, the cortical activity during an event-related, left wrist curl task was mapped with fNIRS before, during, and after tDCS stimulation on eight healthy adults. Along with the fNIRS optodes, two electrodes were placed over the sensorimotor hand areas of both brain hemispheres to apply tDCS. Changes were found in both resting state cortical connectivity and cortical activation patterns that occurred during and after tDCS. Additionally, changes to surface electromyography (sEMG) measurements of the wrist flexor and extensor of both arms during the wrist curl movement, acquired concurrently with fNIRS, were analyzed and related to the transient cortical plastic changes induced by tDCS.
AB - Electrical stimulation of the human cortex in conjunction with physical rehabilitation has been a valuable approach in facilitating the plasticity of the injured brain. One such method is transcranial direct current stimulation (tDCS) which is a non-invasive method to elicit neural stimulation by delivering current through electrodes placed on the scalp. In order to better understand the effects tDCS has on cortical plasticity, neuroimaging techniques have been used pre and post tDCS stimulation. Recently, neuroimaging methods have discovered changes in resting state cortical hemodynamics after the application of tDCS on human subjects. However, analysis of the cortical hemodynamic activity for a physical task during and post tDCS stimulation has not been studied to our knowledge. A viable and sensitive neuroimaging method to map changes in cortical hemodynamics during activation is functional near-infrared spectroscopy (fNIRS). In this study, the cortical activity during an event-related, left wrist curl task was mapped with fNIRS before, during, and after tDCS stimulation on eight healthy adults. Along with the fNIRS optodes, two electrodes were placed over the sensorimotor hand areas of both brain hemispheres to apply tDCS. Changes were found in both resting state cortical connectivity and cortical activation patterns that occurred during and after tDCS. Additionally, changes to surface electromyography (sEMG) measurements of the wrist flexor and extensor of both arms during the wrist curl movement, acquired concurrently with fNIRS, were analyzed and related to the transient cortical plastic changes induced by tDCS.
KW - Cortical stimulation
KW - Functional near-infrared imaging
KW - Motor cortex
KW - Neuroimaging
UR - http://www.scopus.com/inward/record.url?scp=84878167082&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84878167082&partnerID=8YFLogxK
U2 - 10.1117/12.2003446
DO - 10.1117/12.2003446
M3 - Conference contribution
AN - SCOPUS:84878167082
SN - 9780819493347
T3 - Progress in Biomedical Optics and Imaging - Proceedings of SPIE
BT - Photonic Therapeutics and Diagnostics IX
T2 - Photonic Therapeutics and Diagnostics IX
Y2 - 2 February 2013 through 7 February 2013
ER -