TY - JOUR
T1 - Unrecognized non-Q-wave myocardial infarction
T2 - Prevalence and prognostic significance in patients with suspected coronary disease
AU - Kim, Han W.
AU - Klem, Igor
AU - Shah, Dipan J.
AU - Wu, Edwin
AU - Meyers, Sheridan N.
AU - Parker, Michele A.
AU - Crowley, Anna Lisa
AU - Bonow, Robert O.
AU - Judd, Robert M.
AU - Kim, Raymond J.
N1 - Copyright:
Copyright 2013 Elsevier B.V., All rights reserved.
PY - 2009/4
Y1 - 2009/4
N2 - Background: Unrecognized myocardial infarction (UMI) is known to constitute a substantial portion of potentially lethal coronary heart disease. However, the diagnosis of UMI is based on the appearance of incidental Q-waves on 12-lead electrocardiography. Thus, the syndrome of non-Q-wave UMI has not been investigated. Delayed-enhancement cardiovascular magnetic resonance (DE-CMR) can identify MI, even when small, subendocardial, or without associated Q-waves. The aim of this study was to investigate the prevalence and prognosis associated with non-Q-wave UMI identified by DE-CMR. Methods and Findings: We conducted a prospective study of 185 patients with suspected coronary disease and without history of clinical myocardial infarction who were scheduled for invasive coronary angiography. Q-wave UMI was determined by electrocardiography (Minnesota Code). Non-Q-wave UMI was identified by DE-CMR in the absence of electrocardiographic Q-waves. Patients were followed to determine the prognostic significance of non-Q-wave UMI. The primary endpoint was all-cause mortality. The prevalence of non-Q-wave UMI was 27% (50/185), compared with 8% (15/185) for Q-wave UMI. Patients with non-Q-wave UMI were older, were more likely to have diabetes, and had higher Framingham risk than those without MI, but were similar to those with Q-wave UMI. Infarct size in non-Q-wave UMI was modest (8%±7% of left ventricular mass), and left ventricular ejection fraction (LVEF) by cine-CMR was usually preserved (52%±18%). The prevalence of non-Q-wave UMI increased with the extent and severity of coronary disease on angiography (p<0.0001 for both). Over 2.2 y (interquartile range 1.8-2.7), 16 deaths occurred: 13 in non-Q-wave UMI patients (26%), one in Q-wave UMI (7%), and two in patients without MI (2%). Multivariable analysis including New York Heart Association class and LVEF demonstrated that non-Q-wave UMI was an independent predictor of all-cause mortality (hazard ratio [HR] 11.4, 95% confidence interval [CI] 2.5-51.1) and cardiac mortality (HR 17.4, 95% CI 2.2-137.4). Conclusions: In patients with suspected coronary disease, the prevalence of non-Q-wave UMI is more than 3-fold higher than Q-wave UMI. The presence of non-Q-wave UMI predicts subsequent mortality, and is incremental to LVEF. Trial Registration: Clinicaltrials.gov NCT00493168.
AB - Background: Unrecognized myocardial infarction (UMI) is known to constitute a substantial portion of potentially lethal coronary heart disease. However, the diagnosis of UMI is based on the appearance of incidental Q-waves on 12-lead electrocardiography. Thus, the syndrome of non-Q-wave UMI has not been investigated. Delayed-enhancement cardiovascular magnetic resonance (DE-CMR) can identify MI, even when small, subendocardial, or without associated Q-waves. The aim of this study was to investigate the prevalence and prognosis associated with non-Q-wave UMI identified by DE-CMR. Methods and Findings: We conducted a prospective study of 185 patients with suspected coronary disease and without history of clinical myocardial infarction who were scheduled for invasive coronary angiography. Q-wave UMI was determined by electrocardiography (Minnesota Code). Non-Q-wave UMI was identified by DE-CMR in the absence of electrocardiographic Q-waves. Patients were followed to determine the prognostic significance of non-Q-wave UMI. The primary endpoint was all-cause mortality. The prevalence of non-Q-wave UMI was 27% (50/185), compared with 8% (15/185) for Q-wave UMI. Patients with non-Q-wave UMI were older, were more likely to have diabetes, and had higher Framingham risk than those without MI, but were similar to those with Q-wave UMI. Infarct size in non-Q-wave UMI was modest (8%±7% of left ventricular mass), and left ventricular ejection fraction (LVEF) by cine-CMR was usually preserved (52%±18%). The prevalence of non-Q-wave UMI increased with the extent and severity of coronary disease on angiography (p<0.0001 for both). Over 2.2 y (interquartile range 1.8-2.7), 16 deaths occurred: 13 in non-Q-wave UMI patients (26%), one in Q-wave UMI (7%), and two in patients without MI (2%). Multivariable analysis including New York Heart Association class and LVEF demonstrated that non-Q-wave UMI was an independent predictor of all-cause mortality (hazard ratio [HR] 11.4, 95% confidence interval [CI] 2.5-51.1) and cardiac mortality (HR 17.4, 95% CI 2.2-137.4). Conclusions: In patients with suspected coronary disease, the prevalence of non-Q-wave UMI is more than 3-fold higher than Q-wave UMI. The presence of non-Q-wave UMI predicts subsequent mortality, and is incremental to LVEF. Trial Registration: Clinicaltrials.gov NCT00493168.
UR - http://www.scopus.com/inward/record.url?scp=66149131834&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=66149131834&partnerID=8YFLogxK
U2 - 10.1371/journal.pmed.1000057
DO - 10.1371/journal.pmed.1000057
M3 - Article
C2 - 19381280
AN - SCOPUS:66149131834
SN - 1549-1277
VL - 6
JO - PLoS Medicine
JF - PLoS Medicine
IS - 4
M1 - e1000057
ER -