Ultrasonic wave propagation across a thin nonlinear anisotropic layer between two half-spaces

Jeff Sadler, Brian O'Neill, Roman Gr Maev

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

Boundary conditions and perturbation theory are combined to create a set of equations which, when solved, yield the reflected and transmitted wave forms in the case of a thin layer of material that is perfectly bonded between two isotropic half-spaces. The set of perturbed boundary conditions is created by first using the fully bonded boundary conditions at each of the two interfaces between the thin layer and the half-spaces. Then, by restricting the layer's thickness to be much smaller than an acoustic wavelength, perturbation theory can be used on these two sets of boundary equations, producing a set of equations which effectively treat the thin layer as a single interface via a perturbation term. With this set of equations, the full range of incident and polar angles can be considered, with results general enough to use with a layer that is anisotropic, nonlinear, or both anisotropic and nonlinear. Finally the validity of these equations is discussed, comparing the computer simulation results of this theory to results from standard methods, and looking at cases where the results (or various properties of the results) are known or can be predicted.

Original languageEnglish (US)
Pages (from-to)51-59
Number of pages9
JournalJournal of the Acoustical Society of America
Volume118
Issue number1
DOIs
StatePublished - Jul 2005

ASJC Scopus subject areas

  • Arts and Humanities (miscellaneous)
  • Acoustics and Ultrasonics

Fingerprint

Dive into the research topics of 'Ultrasonic wave propagation across a thin nonlinear anisotropic layer between two half-spaces'. Together they form a unique fingerprint.

Cite this