Abstract
We found that there are two major pathways by which RNAs are localized at the vegetal cortex during oogenesis of Xenopus laevis. One of these, through which Xlsirts, Xcat2 and Xwnt11 are localized, involves transport during stages 1 and 2 of oogenesis via a region of the mitochondrial cloud that we call the message transport organizer or METRO. This pathway involved three steps, transport of RNA from the GV to the mitochondrial cloud, sorting of the RNAs to specific regions of the METRO, and translocation to and anchoring at the vegetal cortex. These three RNAs exhibit a distinct pattern of spatial localization within the METRO when they approach the vegetal cortex. The other pathway is used by Vg1. We detected Vg1 throughout the oocyte cytoplasm during stages 1 and 2. During stage 3 it was translocated to the vegetal cortex and associated with the cortex overlapping the region at which the Xlsirt, Xcat2, and Xwnt11 RNAs are anchored. Our results also showed that anchoring of these RNAs was dependent in part on actin microfilaments, but was independent of microtubules. These results demonstrate a novel mechanism of translocation and RNA sorting used by RNAs several of which may be involved in the establishment of the embryonic body axis.
Original language | English (US) |
---|---|
Pages (from-to) | 287-297 |
Number of pages | 11 |
Journal | Development |
Volume | 121 |
Issue number | 2 |
State | Published - Feb 1995 |
Keywords
- Axis formation
- METRO
- Oocyte
- Oogenesis
- RNA localization
- Vegetal cortex
- Xenopus laevis
ASJC Scopus subject areas
- Cell Biology
- Anatomy