TY - JOUR
T1 - Troglitazone antagonizes tumor necrosis factor-α-induced reprogramming of adipocyte gene expression by inhibiting the transcriptional regulatory functions of NF-κB
AU - Ruan, Hong
AU - Pownall, Henry J.
AU - Lodish, Harvey F.
PY - 2003/7/25
Y1 - 2003/7/25
N2 - Troglitazone (TGZ), a member of the thiazolidinedione class of anti-diabetic compounds and a peroxisome proliferator activator receptor-γ (PPAR-γ) agonist, restores systemic insulin sensitivity and improves the full insulin resistance syndrome in vivo. The mechanisms underlying its in vivo function are not understood. Here we investigated the potential functional interaction between PPAR-γ and NF-κB in adipocytes. We show that TGZ selectively blocked tumor necrosis factor-α-induced and NF-κB-dependent repression of multiple adipocyte-specific genes and induction of growth phase and other genes. This occurs without interfering with NF-κB expression, activation, nuclear translocation, or DNA binding and without suppressing NF-κB-dependent survival signals. Notably, the expressions of some tumor necrosis factor-α-induced genes in adipocytes were unaffected by PPAR-γ activation. In reporter gene assays in HeLa cells, ectopic expression of PPAR-γ abolished induction of a NF-κB-responsive reporter gene by the p65 subunit (Re1A) of NF-κB, and the inhibition was further enhanced in the presence of TGZ. Conversely, overexpression of p65 inhibited induction of a PPAR-γ-responsive reporter gene by activated PPAR-γ in a dosedependent manner. The inhibitory effect was independent of the presence of NF-κB-binding sites in the promoter region. Other NF-κB family members, p50 and c-Rel as well as the S276A mutant of p65, blocked PPARγ-mediated gene transcription less effectively. Thus, p65 antagonizes the transcriptional regulatory activity of PPAR-γ in adipocytes, and PPAR-γ activation can at least partially override the inhibitory effects of p65 on the expression of key adipocyte genes. Our data suggest that inhibition of NF-κB activity is a mechanism by which PPAR-γ agonists improve insulin sensitivity in vivo and that adipocyte NF-κB is a potential therapeutic target for obesity-linked type 2 diabetes.
AB - Troglitazone (TGZ), a member of the thiazolidinedione class of anti-diabetic compounds and a peroxisome proliferator activator receptor-γ (PPAR-γ) agonist, restores systemic insulin sensitivity and improves the full insulin resistance syndrome in vivo. The mechanisms underlying its in vivo function are not understood. Here we investigated the potential functional interaction between PPAR-γ and NF-κB in adipocytes. We show that TGZ selectively blocked tumor necrosis factor-α-induced and NF-κB-dependent repression of multiple adipocyte-specific genes and induction of growth phase and other genes. This occurs without interfering with NF-κB expression, activation, nuclear translocation, or DNA binding and without suppressing NF-κB-dependent survival signals. Notably, the expressions of some tumor necrosis factor-α-induced genes in adipocytes were unaffected by PPAR-γ activation. In reporter gene assays in HeLa cells, ectopic expression of PPAR-γ abolished induction of a NF-κB-responsive reporter gene by the p65 subunit (Re1A) of NF-κB, and the inhibition was further enhanced in the presence of TGZ. Conversely, overexpression of p65 inhibited induction of a PPAR-γ-responsive reporter gene by activated PPAR-γ in a dosedependent manner. The inhibitory effect was independent of the presence of NF-κB-binding sites in the promoter region. Other NF-κB family members, p50 and c-Rel as well as the S276A mutant of p65, blocked PPARγ-mediated gene transcription less effectively. Thus, p65 antagonizes the transcriptional regulatory activity of PPAR-γ in adipocytes, and PPAR-γ activation can at least partially override the inhibitory effects of p65 on the expression of key adipocyte genes. Our data suggest that inhibition of NF-κB activity is a mechanism by which PPAR-γ agonists improve insulin sensitivity in vivo and that adipocyte NF-κB is a potential therapeutic target for obesity-linked type 2 diabetes.
UR - http://www.scopus.com/inward/record.url?scp=0042867242&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0042867242&partnerID=8YFLogxK
U2 - 10.1074/jbc.M303141200
DO - 10.1074/jbc.M303141200
M3 - Article
C2 - 12732648
AN - SCOPUS:0042867242
SN - 0021-9258
VL - 278
SP - 28181
EP - 28192
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 30
ER -