TY - JOUR
T1 - Transforming growth factor-β1 (TGF-β1) and TGF-β2 decrease expression of CD36, the type B scavenger receptor, through mitogen-activated protein kinase phosphorylation of peroxisome proliferator-activated receptor-γ
AU - Han, Jihong
AU - Hajjar, David P.
AU - Tauras, James M.
AU - Feng, Jianwei
AU - Gotto, Antonio M.
AU - Nicholson, Andrew C.
PY - 2000/1/14
Y1 - 2000/1/14
N2 - CD36, the macrophage type B scavenger receptor, binds and internalizes oxidized low density lipoprotein, a key event in the development of macrophage foam cells within atherosclerotic lesions. Expression of CD36 in monocyte/macrophages is dependent on differentiation status and exposure to soluble mediators. In this study, we investigated the effect of transforming growth factor-β1 (TGF-β1) and TGF-β2 on the expression of CD36 in macrophages. Treatment of phorbol ester-differentiated THP-1 macrophages with TGF-β1 or TGF-β2 significantly decreased expression of CD36 mRNA and surface protein. TGF-β1/TGF-β2 also inhibited CD36 mRNA expression induced by oxidized low density lipoprotein and 15-deoxyΔ12,14 prostaglandin J2, a peroxisome proliferator-activated receptor (PPAR)-γ ligand, suggesting that the TGF-β1/TGF-β2 down-regulated CD36 expression by inactivating PPAR-γ-mediated signaling. TGF-β1/TGF-β2 increased phosphorylation of both mitogen-activated protein (MAP) kinase and PPAR-γ, whereas MAP kinase inhibitors reversed suppression of CD36 and inhibited PPAR-γ phosphorylation induced by TGF-β1/TGF-β2. Finally, MAP kinase inhibitors alone increased expression of CD36 mRNA and surface protein but had no effect on PPAR-γ protein levels. Our data demonstrate for the first time that TGF-β1 and TGF-β2 decrease expression of CD36 by a mechanism involving phosphorylation of MAP kinase, subsequent MAP kinase phosphorylation of PPAR-γ, and a decrease in CD36 gene transcription by phosphorylated PPAR-γ.
AB - CD36, the macrophage type B scavenger receptor, binds and internalizes oxidized low density lipoprotein, a key event in the development of macrophage foam cells within atherosclerotic lesions. Expression of CD36 in monocyte/macrophages is dependent on differentiation status and exposure to soluble mediators. In this study, we investigated the effect of transforming growth factor-β1 (TGF-β1) and TGF-β2 on the expression of CD36 in macrophages. Treatment of phorbol ester-differentiated THP-1 macrophages with TGF-β1 or TGF-β2 significantly decreased expression of CD36 mRNA and surface protein. TGF-β1/TGF-β2 also inhibited CD36 mRNA expression induced by oxidized low density lipoprotein and 15-deoxyΔ12,14 prostaglandin J2, a peroxisome proliferator-activated receptor (PPAR)-γ ligand, suggesting that the TGF-β1/TGF-β2 down-regulated CD36 expression by inactivating PPAR-γ-mediated signaling. TGF-β1/TGF-β2 increased phosphorylation of both mitogen-activated protein (MAP) kinase and PPAR-γ, whereas MAP kinase inhibitors reversed suppression of CD36 and inhibited PPAR-γ phosphorylation induced by TGF-β1/TGF-β2. Finally, MAP kinase inhibitors alone increased expression of CD36 mRNA and surface protein but had no effect on PPAR-γ protein levels. Our data demonstrate for the first time that TGF-β1 and TGF-β2 decrease expression of CD36 by a mechanism involving phosphorylation of MAP kinase, subsequent MAP kinase phosphorylation of PPAR-γ, and a decrease in CD36 gene transcription by phosphorylated PPAR-γ.
UR - http://www.scopus.com/inward/record.url?scp=0033968252&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0033968252&partnerID=8YFLogxK
U2 - 10.1074/jbc.275.2.1241
DO - 10.1074/jbc.275.2.1241
M3 - Article
C2 - 10625669
AN - SCOPUS:0033968252
VL - 275
SP - 1241
EP - 1246
JO - The Journal of biological chemistry
JF - The Journal of biological chemistry
SN - 0021-9258
IS - 2
ER -