Titan: Bringing the Deep Image Prior to Implicit Representations

Lorenzo Luzi, Daniel Lejeune, Ali Siahkoohi, Sina Alemohammad, Vishwanath Saragadam, Hossein Babaei, Naiming Liu, Zichao Wang, Richard G. Baraniuk

Research output: Contribution to journalConference articlepeer-review

Abstract

We study the interpolation capabilities of implicit neural representations (INRs) of images. In principle, INRs promise a number of advantages, such as continuous derivatives and arbitrary sampling, being freed from the restrictions of a raster grid. However, empirically, INRs have been observed to poorly interpolate between the pixels of the fit image; in other words, they do not inherently possess a suitable prior for natural images. In this paper, we propose to address and improve INRs' interpolation capabilities by explicitly integrating image prior information into the INR architecture via deep decoder, a specific implementation of the deep image prior (DIP). Our method, which we call TITAN, leverages a residual connection from the input which enables integrating the principles of the grid-based DIP into the grid-free INR. Through super-resolution and computed tomography experiments, we demonstrate that our method significantly improves upon classic INRs, thanks to the induced natural image bias. We also find that by constraining the weights to be sparse, image quality and sharpness are enhanced, increasing the Lipschitz constant.

Original languageEnglish (US)
Pages (from-to)6165-6169
Number of pages5
JournalICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
DOIs
StatePublished - 2024
Event2024 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2024 - Seoul, Korea, Republic of
Duration: Apr 14 2024Apr 19 2024

Keywords

  • Implicit neural representations
  • deep image prior
  • sparsity

ASJC Scopus subject areas

  • Software
  • Signal Processing
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Titan: Bringing the Deep Image Prior to Implicit Representations'. Together they form a unique fingerprint.

Cite this