TY - JOUR
T1 - The in vitro metabolism of benzo[a]pyrene by polychlorinated and polybrominated biphenyl induced rat hepatic microsomal monooxygenases
AU - Haake, J. M.
AU - Merrill, J. C.
AU - Safe, S.
PY - 1985
Y1 - 1985
N2 - The metabolism of benzo[a]pyrene by halogenated biphenyl-induced rat hepatic microsomal monooxygenases was determined using a high pressure liquid chromatographic assay system. Incubation of benzo[a]pyrene with microsomes from rats pretreated with phenobarbitone or phenobarbitone-type inducers (2,2',4,4',5,5'-hexachlorobiphenyl, 2,2',4,4',6,6'-hexachlorobiphenyl, 2,2',5,5'-tetrachlorobiphenyl, 2,2',4,4',5,5'-hexabromobiphenyl, and 2,2',5,5'-tetrabromobiphenyl) resulted in increased overall metabolism of the hydrocarbon (less than fourfold) into phenolic, quinone, and diol metabolites, with the most striking increase observed in the formation of 4,5-dihydro-4,5-dihydroxybenzo[a]pyrene. In contrast, the metabolism of benzo[a]pyrene by microsomes from rats induced with 3-methylcholanthrene or 3,3',4,4'-tetrachlorobiphenyl resulted in a >10-fold increase in overall benzo[a]pyrene metabolism, with the largest increases observed in the formation of the trans-7,8- and -9,10-dihydrodiol metabolites of benzo[a]pyrene. However, in comparison to control and phenobarbitone-induced microsomes, the oxidative conversion of benzo[a]pyrene by microsomes induced with 3-methylcholanthrene and 3,3',4,4'-tetrachlorobiphenyl into the 6,12-quinone was substantially inhibited. Previous reports have shown that the commercial halogenated biphenyl mixtures, fireMaster BP-6, and Aroclor 1254 are mixed-type inducers and that microsomes from rats pretreated with these mixtures markedly enhance the overall metabolism of benzo[a]pyrene. Not surprisingly, the metabolism of benzo[a]pyrene by microsomes from rats pretreated with the mixed-type inducers, 2,3,3',4,4'-penta-, 2,3,3',4,4',5-hexa-, and 2',3,3',4,4',5-hexa-chlorobiphenyl was also increased and the metabolic profile was similar to that observed with fireMaster BP-6 and Aroclor 1254 induced microsomes.
AB - The metabolism of benzo[a]pyrene by halogenated biphenyl-induced rat hepatic microsomal monooxygenases was determined using a high pressure liquid chromatographic assay system. Incubation of benzo[a]pyrene with microsomes from rats pretreated with phenobarbitone or phenobarbitone-type inducers (2,2',4,4',5,5'-hexachlorobiphenyl, 2,2',4,4',6,6'-hexachlorobiphenyl, 2,2',5,5'-tetrachlorobiphenyl, 2,2',4,4',5,5'-hexabromobiphenyl, and 2,2',5,5'-tetrabromobiphenyl) resulted in increased overall metabolism of the hydrocarbon (less than fourfold) into phenolic, quinone, and diol metabolites, with the most striking increase observed in the formation of 4,5-dihydro-4,5-dihydroxybenzo[a]pyrene. In contrast, the metabolism of benzo[a]pyrene by microsomes from rats induced with 3-methylcholanthrene or 3,3',4,4'-tetrachlorobiphenyl resulted in a >10-fold increase in overall benzo[a]pyrene metabolism, with the largest increases observed in the formation of the trans-7,8- and -9,10-dihydrodiol metabolites of benzo[a]pyrene. However, in comparison to control and phenobarbitone-induced microsomes, the oxidative conversion of benzo[a]pyrene by microsomes induced with 3-methylcholanthrene and 3,3',4,4'-tetrachlorobiphenyl into the 6,12-quinone was substantially inhibited. Previous reports have shown that the commercial halogenated biphenyl mixtures, fireMaster BP-6, and Aroclor 1254 are mixed-type inducers and that microsomes from rats pretreated with these mixtures markedly enhance the overall metabolism of benzo[a]pyrene. Not surprisingly, the metabolism of benzo[a]pyrene by microsomes from rats pretreated with the mixed-type inducers, 2,3,3',4,4'-penta-, 2,3,3',4,4',5-hexa-, and 2',3,3',4,4',5-hexa-chlorobiphenyl was also increased and the metabolic profile was similar to that observed with fireMaster BP-6 and Aroclor 1254 induced microsomes.
UR - http://www.scopus.com/inward/record.url?scp=0022337595&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0022337595&partnerID=8YFLogxK
U2 - 10.1139/y85-180
DO - 10.1139/y85-180
M3 - Article
C2 - 2996731
AN - SCOPUS:0022337595
SN - 0008-4212
VL - 63
SP - 1096
EP - 1100
JO - Canadian Journal of Physiology and Pharmacology
JF - Canadian Journal of Physiology and Pharmacology
IS - 9
ER -