The human brain pacemaker: Synchronized infra-slow neurovascular coupling in patients undergoing non-pulsatile cardiopulmonary bypass

Paolo Zanatta, Gianna Maria Toffolo, Elisa Sartori, Anna Bet, Fabrizio Baldanzi, Nivedita Agarwal, Eugene Golanov

Research output: Contribution to journalArticlepeer-review

5 Scopus citations


In non-pulsatile cardiopulmonary bypass surgery, middle cerebral artery blood flow velocity (BFV) is characterized by infra-slow oscillations of approximately 0.06. Hz, which are paralleled by changes in total EEG power variability (EEG-PV), measured in 2. s intervals. Since the origin of these BFV oscillations is not known, we explored their possible causative relationships with oscillations in EEG-PV at around 0.06. Hz. We monitored 28 patients undergoing non-pulsatile cardiopulmonary bypass using transcranial Doppler sonography and scalp electroencephalography at two levels of anesthesia, deep (prevalence of burst suppression rhythm) and moderate (prevalence of theta rhythm).Under deep anesthesia, the EEG bursts suppression pattern was highly correlative with BFV oscillations. Hence, a detailed quantitative picture of the coupling between electrical brain activity and BFV was derived, both in deep and moderate anesthesia, via linear and non linear processing of EEG-PV and BFV signals, resorting to widely used measures of signal coupling such as frequency of oscillations, coherence, Granger causality and cross-approximate entropy. Results strongly suggest the existence of coupling between EEG-PV and BFV. In moderate anesthesia EEG-PV mean dominant frequency is similar to frequency of BFV oscillations (0.065 ± 0.010. Hz vs 0.045 ± 0.019. Hz); coherence between the two signals was significant in about 55% of subjects, and the Granger causality suggested an EEG-PV → BFV causal effect direction. The strength of the coupling increased with deepening anesthesia, as EEG-PV oscillations mean dominant frequency virtually coincided with the BFV peak frequency (0.062 ± 0.017. Hz vs 0.060 ± 0.024. Hz), and coherence became significant in a larger number (65%) of subjects. Cross-approximate entropy decreased significantly from moderate to deep anesthesia, indicating a higher level of synchrony between the two signals.Presence of a subcortical brain pacemaker that drives vascular infra-slow oscillations in the brain is proposed. These findings allow to suggest an original hypothesis explaining the mechanism underlying infra-slow neurovascular coupling.

Original languageEnglish (US)
Pages (from-to)10-19
Number of pages10
StatePublished - May 5 2013


  • Brain blood flow velocity
  • EEG power variability
  • Infra-slow oscillations
  • Multimodality neuromonitoring
  • Non-pulsatile cardiopulmonary bypass

ASJC Scopus subject areas

  • Cognitive Neuroscience
  • Neurology


Dive into the research topics of 'The human brain pacemaker: Synchronized infra-slow neurovascular coupling in patients undergoing non-pulsatile cardiopulmonary bypass'. Together they form a unique fingerprint.

Cite this