TY - JOUR
T1 - The human brain pacemaker
T2 - Synchronized infra-slow neurovascular coupling in patients undergoing non-pulsatile cardiopulmonary bypass
AU - Zanatta, Paolo
AU - Toffolo, Gianna Maria
AU - Sartori, Elisa
AU - Bet, Anna
AU - Baldanzi, Fabrizio
AU - Agarwal, Nivedita
AU - Golanov, Eugene
N1 - Funding Information:
This study was supported by a grant from the Regione Veneto in Italy for a project on the Reduction of Neurodysfunction after Cardiac Surgery and Neurosurgery, Improvement in Multimodality Neuromonitoring for neurophysiological technicians.
PY - 2013/5/5
Y1 - 2013/5/5
N2 - In non-pulsatile cardiopulmonary bypass surgery, middle cerebral artery blood flow velocity (BFV) is characterized by infra-slow oscillations of approximately 0.06. Hz, which are paralleled by changes in total EEG power variability (EEG-PV), measured in 2. s intervals. Since the origin of these BFV oscillations is not known, we explored their possible causative relationships with oscillations in EEG-PV at around 0.06. Hz. We monitored 28 patients undergoing non-pulsatile cardiopulmonary bypass using transcranial Doppler sonography and scalp electroencephalography at two levels of anesthesia, deep (prevalence of burst suppression rhythm) and moderate (prevalence of theta rhythm).Under deep anesthesia, the EEG bursts suppression pattern was highly correlative with BFV oscillations. Hence, a detailed quantitative picture of the coupling between electrical brain activity and BFV was derived, both in deep and moderate anesthesia, via linear and non linear processing of EEG-PV and BFV signals, resorting to widely used measures of signal coupling such as frequency of oscillations, coherence, Granger causality and cross-approximate entropy. Results strongly suggest the existence of coupling between EEG-PV and BFV. In moderate anesthesia EEG-PV mean dominant frequency is similar to frequency of BFV oscillations (0.065 ± 0.010. Hz vs 0.045 ± 0.019. Hz); coherence between the two signals was significant in about 55% of subjects, and the Granger causality suggested an EEG-PV → BFV causal effect direction. The strength of the coupling increased with deepening anesthesia, as EEG-PV oscillations mean dominant frequency virtually coincided with the BFV peak frequency (0.062 ± 0.017. Hz vs 0.060 ± 0.024. Hz), and coherence became significant in a larger number (65%) of subjects. Cross-approximate entropy decreased significantly from moderate to deep anesthesia, indicating a higher level of synchrony between the two signals.Presence of a subcortical brain pacemaker that drives vascular infra-slow oscillations in the brain is proposed. These findings allow to suggest an original hypothesis explaining the mechanism underlying infra-slow neurovascular coupling.
AB - In non-pulsatile cardiopulmonary bypass surgery, middle cerebral artery blood flow velocity (BFV) is characterized by infra-slow oscillations of approximately 0.06. Hz, which are paralleled by changes in total EEG power variability (EEG-PV), measured in 2. s intervals. Since the origin of these BFV oscillations is not known, we explored their possible causative relationships with oscillations in EEG-PV at around 0.06. Hz. We monitored 28 patients undergoing non-pulsatile cardiopulmonary bypass using transcranial Doppler sonography and scalp electroencephalography at two levels of anesthesia, deep (prevalence of burst suppression rhythm) and moderate (prevalence of theta rhythm).Under deep anesthesia, the EEG bursts suppression pattern was highly correlative with BFV oscillations. Hence, a detailed quantitative picture of the coupling between electrical brain activity and BFV was derived, both in deep and moderate anesthesia, via linear and non linear processing of EEG-PV and BFV signals, resorting to widely used measures of signal coupling such as frequency of oscillations, coherence, Granger causality and cross-approximate entropy. Results strongly suggest the existence of coupling between EEG-PV and BFV. In moderate anesthesia EEG-PV mean dominant frequency is similar to frequency of BFV oscillations (0.065 ± 0.010. Hz vs 0.045 ± 0.019. Hz); coherence between the two signals was significant in about 55% of subjects, and the Granger causality suggested an EEG-PV → BFV causal effect direction. The strength of the coupling increased with deepening anesthesia, as EEG-PV oscillations mean dominant frequency virtually coincided with the BFV peak frequency (0.062 ± 0.017. Hz vs 0.060 ± 0.024. Hz), and coherence became significant in a larger number (65%) of subjects. Cross-approximate entropy decreased significantly from moderate to deep anesthesia, indicating a higher level of synchrony between the two signals.Presence of a subcortical brain pacemaker that drives vascular infra-slow oscillations in the brain is proposed. These findings allow to suggest an original hypothesis explaining the mechanism underlying infra-slow neurovascular coupling.
KW - Brain blood flow velocity
KW - EEG power variability
KW - Infra-slow oscillations
KW - Multimodality neuromonitoring
KW - Non-pulsatile cardiopulmonary bypass
UR - http://www.scopus.com/inward/record.url?scp=84873744671&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84873744671&partnerID=8YFLogxK
U2 - 10.1016/j.neuroimage.2013.01.033
DO - 10.1016/j.neuroimage.2013.01.033
M3 - Article
C2 - 23357071
AN - SCOPUS:84873744671
SN - 1053-8119
VL - 72
SP - 10
EP - 19
JO - NeuroImage
JF - NeuroImage
ER -