The histone deacetylase inhibitor LAQ824 induces human leukemia cell death through a process involving XIAP down-regulation, oxidative injury, and the acid sphingomyelinase-dependent generation of ceramide

Roberto R. Rosato, Sonia C. Maggio, Jorge A. Almenara, Shawn G. Payne, Peter Atadja, Sarah Spiegel, Paul Dent, Steven Grant

Research output: Contribution to journalArticle

93 Scopus citations

Abstract

Determinants of differentiation and apoptosis induction by the novel histone deacetylase inhibitor (HDACI) LAQ824 were examined in human leukemia cells (U937 and Jurkat). Exposure of U937 cells to a low concentration of LAQ824 (30 nM) resulted in a delayed (2 h) increase in reactive oxygen species (ROS), induction of p21WAF1/CIP1, pRb dephosphorylation, growth arrest of cells in G0/G1 phase, and differentiation. On the other hand, exposure of cells to a higher concentration of LAQ824 (75 nM) resulted in the early (30 min) generation of ROS, arrest of cells in G2/M phase, down-regulation of XIAP (at the transcriptional level) and Mcl-1 (through a caspase-mediated process), the acid sphingomyelinase-dependent generation of ceramide, and profound mitochondrial injury, caspase activation, and apoptosis. LAQ824-induced lethality in U937 cells did not involve the extrinsic apoptotic pathway, nor was it associated with death receptor up-regulation; instead, it was markedly inhibited by ectopic expression of Bcl-2, Bcl-xL, XIAP, and Mcl-1. The free radical scavenger N-acetyl cysteine blocked LAQ824-mediated ROS generation, mitochondrial injury, Mcl-1 down-regulation, ceramide generation, and apoptosis, suggesting a primary role for oxidative injury in LAQ824 lethality. Together, these findings indicate that LAQ824-induced lethality represents a multifactorial process in which LAQ824-mediated ROS generation is necessary but not sufficient to induce apoptosis, and that the degree of XIAP and Mcl-1 down-regulation and ceramide generation determines whether this agent engages a maturation rather than an apoptotic program.

Original languageEnglish (US)
Pages (from-to)216-225
Number of pages10
JournalMolecular Pharmacology
Volume69
Issue number1
DOIs
StatePublished - Jan 2006

ASJC Scopus subject areas

  • Molecular Medicine
  • Pharmacology

Fingerprint Dive into the research topics of 'The histone deacetylase inhibitor LAQ824 induces human leukemia cell death through a process involving XIAP down-regulation, oxidative injury, and the acid sphingomyelinase-dependent generation of ceramide'. Together they form a unique fingerprint.

Cite this