The FGF-BMP signaling axis regulates outflow tract valve primordium formation by promoting cushion neural crest cell differentiation

Jue Zhang, Julia Y.F. Chang, Yanqing Huang, Xiang Lin, Yongde Luo, Robert J. Schwartz, James F. Martin, Fen Wang

Research output: Contribution to journalArticlepeer-review

34 Scopus citations

Abstract

Rationale: Heart valves develop from precursor structures called cardiac cushions, an endothelial-lined cardiac jelly that resides in the inner side of the heart tube. The cushions are then invaded by cells from different sources, undergo a series of complicated and poorly understood remodeling processes, and give rise to valves. Disruption of the fibroblast growth factor (FGF) signaling axis impairs morphogenesis of the outflow tract (OFT). Yet, whether FGF signaling regulates OFT valve formation is unknown. Objective: To study how OFT valve formation is regulated and how aberrant cell signaling causes valve defects. Methods and results: By using mouse genetic manipulation, cell lineage tracing, ex vivo heart culture, and molecular biology approaches, we demonstrated that FGF signaling in the OFT myocardium upregulated Bmp4 expression, which then enhanced smooth muscle differentiation of neural crest cells (NCCs) in the cushion. FGF signaling also promoted OFT myocardial cell invasion to the cushion. Disrupting FGF signaling interrupted cushion remodeling with reduced NCCs differentiation into smooth muscle and less cardiomyocyte invasion and resulted in malformed OFT valves. Conclusions: The results demonstrate a novel mechanism by which the FGF-BMP signaling axis regulates formation of OFT valve primordia by controlling smooth muscle differentiation of cushion NCCs.

Original languageEnglish (US)
Pages (from-to)1209-1219
Number of pages11
JournalCirculation Research
Volume107
Issue number10
DOIs
StatePublished - Nov 12 2010

Keywords

  • BMP
  • FGF
  • NCC differentiation
  • cardiac valve defect
  • heart development

ASJC Scopus subject areas

  • Physiology
  • Cardiology and Cardiovascular Medicine

Fingerprint

Dive into the research topics of 'The FGF-BMP signaling axis regulates outflow tract valve primordium formation by promoting cushion neural crest cell differentiation'. Together they form a unique fingerprint.

Cite this