TY - JOUR
T1 - The effect of quantum fluctuations on the ferromagnetic-helix transition in a Heisenberg tetragonal lattice with competing in-plane interactions
AU - Harris, A. B.
AU - Pimpinelli, Alberto
AU - Rastelli, E.
AU - Tassi, A.
PY - 1989/12/1
Y1 - 1989/12/1
N2 - Perturbative treatments of quantum fluctuations in Heisenberg helimagnets starting from the classical approximation fail because for S to infinity the spin wave is well defined only for a fixed helix wavevector Q. Recently an exact T-matrix evaluation of the contribution to the ground-state energy from long-wavelength quantum fluctuations near the classical ferromagnetic-helix (F-H) transition line was performed in order to discuss the zero-temperature phase diagram in the j2-J3 plane, where j2 (j3) sets the scale of second (third) neighbour interactions in the basal plane. For the hexagonal lattice it was shown that quantum fluctuations could change from second to first order the F-H transition near the F-AF-H classical triple point, where AF denotes antiferromagnet. Here the authors give analogous calculations on a tetragonal lattice, which show unexpected lattice-dependent features. In addition to a behaviour similar to that found on the hexagonal lattice near the F-AF-H triple point, the change of the order of transition is found also on a semi-infinite part of the classical F-H phase boundary.
AB - Perturbative treatments of quantum fluctuations in Heisenberg helimagnets starting from the classical approximation fail because for S to infinity the spin wave is well defined only for a fixed helix wavevector Q. Recently an exact T-matrix evaluation of the contribution to the ground-state energy from long-wavelength quantum fluctuations near the classical ferromagnetic-helix (F-H) transition line was performed in order to discuss the zero-temperature phase diagram in the j2-J3 plane, where j2 (j3) sets the scale of second (third) neighbour interactions in the basal plane. For the hexagonal lattice it was shown that quantum fluctuations could change from second to first order the F-H transition near the F-AF-H classical triple point, where AF denotes antiferromagnet. Here the authors give analogous calculations on a tetragonal lattice, which show unexpected lattice-dependent features. In addition to a behaviour similar to that found on the hexagonal lattice near the F-AF-H triple point, the change of the order of transition is found also on a semi-infinite part of the classical F-H phase boundary.
UR - http://www.scopus.com/inward/record.url?scp=36149037363&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=36149037363&partnerID=8YFLogxK
U2 - 10.1088/0953-8984/1/24/005
DO - 10.1088/0953-8984/1/24/005
M3 - Article
AN - SCOPUS:36149037363
SN - 0953-8984
VL - 1
SP - 3821
EP - 3831
JO - Journal of Physics: Condensed Matter
JF - Journal of Physics: Condensed Matter
IS - 24
M1 - 005
ER -