The binary toxin CDT enhances Clostridium difficile virulence by suppressing protective colonic eosinophilia

Carrie A. Cowardin, Erica L. Buonomo, Mahmoud M. Saleh, Madeline G. Wilson, Stacey L. Burgess, Sarah A. Kuehne, Carsten Schwan, Anna M. Eichhoff, Friedrich Koch-Nolte, Dena Lyras, Klaus Aktories, Nigel P. Minton, William A. Petri

Research output: Contribution to journalArticlepeer-review

142 Scopus citations

Abstract

Clostridium difficile is the most common hospital acquired pathogen in the USA, and infection is, in many cases, fatal. Toxins A and B are its major virulence factors, but expression of a third toxin, known as C. difficile transferase (CDT), is increasingly common. An adenosine diphosphate (ADP)-ribosyltransferase that causes actin cytoskeletal disruption, CDT is typically produced by the major, hypervirulent strains and has been associated with more severe disease. Here, we show that CDT enhances the virulence of two PCR-ribotype 027 strains in mice. The toxin induces pathogenic host inflammation via a Toll-like receptor 2 (TLR2)-dependent pathway, resulting in the suppression of a protective host eosinophilic response. Finally, we show that restoration of TLR2-deficient eosinophils is sufficient for protection from a strain producing CDT. These findings offer an explanation for the enhanced virulence of CDT-expressing C. difficile and demonstrate a mechanism by which this binary toxin subverts the host immune response.

Original languageEnglish (US)
Article number16108
JournalNature Microbiology
Volume1
Issue number8
DOIs
StatePublished - Jul 11 2016

ASJC Scopus subject areas

  • Microbiology
  • Immunology
  • Applied Microbiology and Biotechnology
  • Genetics
  • Microbiology (medical)
  • Cell Biology

Fingerprint

Dive into the research topics of 'The binary toxin CDT enhances Clostridium difficile virulence by suppressing protective colonic eosinophilia'. Together they form a unique fingerprint.

Cite this