The BBA33 lipoprotein binds collagen and impacts Borrelia burgdorferi pathogenesis

Hui Zhi, Eric H. Weening, Elena Magda Barbu, Jenny A. Hyde, Magnus Höök, Jon T. Skare

Research output: Contribution to journalArticlepeer-review

20 Scopus citations


Summary: Borrelia burgdorferi, the etiologic agent of Lyme disease, adapts to the mammalian hosts by differentially expressing several genes in the BosR and Rrp2-RpoN-RpoS dependent pathways, resulting in a distinct protein profile relative to that seen for survival in the Ixodes spp. tick. Previous studies indicate that a putative lipoprotein, BBA33, is produced in an RpoS-dependent manner under conditions that mimic the mammalian component of the borrelial lifecycle. However, the significance and function for BBA33 is not known. Given its linkage to the BosR/Rrp2-RpoN-RpoS regulatory cascade, we hypothesized that BBA33 facilitates B.burgdorferi infection in the mammalian host. The deletion of bba33 eliminated B.burgdorferi infectivity in C3H mice, which was rescued by genetic complementation with intact bba33. With regard to function, a combinatorial peptide approach, coupled with subsequent in vitro binding assays, indicated that BBA33 binds to collagen type VI and, to a lesser extent, collagen type IV. Whole cell binding assays demonstrated BBA33-dependent binding to human collagen type VI. Taken together, these results suggest that BBA33 interacts with collagenous structures and may function as an adhesin in a process that is required to prevent bacterial clearance. Borrelia burgdorferi, the etiologic agent of Lyme disease, binds to extracellular matrix targets, including collagen. Despite this connection, there are no borrelial proteins known to specifically mediate this interaction. In the Zhi et al. report, the surface exposed BBA33 lipoprotein is shown to bind to collagen type VI, and to a lesser extent, type IV. The absence of bba33 greatly impairs borrelial infectivity, providing a link to collagen adherence and B. burgdorferi pathogenesis.

Original languageEnglish (US)
Pages (from-to)68-83
Number of pages16
JournalMolecular Microbiology
Issue number1
StatePublished - Apr 1 2015

ASJC Scopus subject areas

  • Microbiology
  • Molecular Biology


Dive into the research topics of 'The BBA33 lipoprotein binds collagen and impacts Borrelia burgdorferi pathogenesis'. Together they form a unique fingerprint.

Cite this