Temporal assessment of radiomic features on clinical mammography in a high-risk population

Kayla R. Mendel, Hui Li, Li Lan, Chun Wai Chan, Lauren M. King, Nabihah Tayob, Gary Whitman, Randa El-Zein, Isabelle Bedrosian, Maryellen L. Giger

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Extraction of high-dimensional quantitative data from medical images has become necessary in disease risk assessment, diagnostics and prognostics. Radiomic workflows for mammography typically involve a single medical image for each patient although medical images may exist for multiple imaging exams, especially in screening protocols. Our study takes advantage of the availability of mammograms acquired over multiple years for the prediction of cancer onset. This study included 841 images from 328 patients who developed subsequent mammographic abnormalities, which were confirmed as either cancer (n=173) or non-cancer (n=155) through diagnostic core needle biopsy. Quantitative radiomic analysis was conducted on antecedent FFDMs acquired a year or more prior to diagnostic biopsy. Analysis was limited to the breast contralateral to that in which the abnormality arose. Novel metrics were used to identify robust radiomic features. The most robust features were evaluated in the task of predicting future malignancies on a subset of 72 subjects (23 cancer cases and 49 non-cancer controls) with mammograms over multiple years. Using linear discriminant analysis, the robust radiomic features were merged into predictive signatures by: (i) using features from only the most recent contralateral mammogram, (ii) change in feature values between mammograms, and (iii) ratio of feature values over time, yielding AUCs of 0.57 (SE=0.07), 0.63 (SE=0.06), and 0.66 (SE=0.06), respectively. The AUCs for temporal radiomics (ratio) statistically differed from chance, suggesting that changes in radiomics over time may be critical for risk assessment. Overall, we found that our two-stage process of robustness assessment followed by performance evaluation served well in our investigation on the role of temporal radiomics in risk assessment.

Original languageEnglish (US)
Title of host publicationMedical Imaging 2018
Subtitle of host publicationComputer-Aided Diagnosis
PublisherSPIE
Volume10575
ISBN (Electronic)9781510616394
DOIs
StatePublished - 2018
EventMedical Imaging 2018: Computer-Aided Diagnosis - Houston, United States
Duration: Feb 12 2018Feb 15 2018

Other

OtherMedical Imaging 2018: Computer-Aided Diagnosis
CountryUnited States
CityHouston
Period2/12/182/15/18

Keywords

  • Breast cancer
  • mammogram
  • radiomics
  • risk assessment
  • texture

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Biomaterials
  • Atomic and Molecular Physics, and Optics
  • Radiology Nuclear Medicine and imaging

Fingerprint Dive into the research topics of 'Temporal assessment of radiomic features on clinical mammography in a high-risk population'. Together they form a unique fingerprint.

Cite this