TY - GEN
T1 - Synthetic ultrasound images to benchmark echocardiography-based biomechanics
AU - Mukherjee, Tanmay
AU - Neelakantan, Sunder
AU - Myers, Kyle
AU - Tong, Carl
AU - Avazmohammadi, Reza
N1 - Publisher Copyright:
© 2024 IEEE.
PY - 2024
Y1 - 2024
N2 - Brightness mode (B-mode) ultrasound is a common imaging modality in the clinical assessment of several cardiovascular diseases. The utility of ultrasound-based functional indices such as the ejection fraction (EF) and stroke volume (SV) is widely described in diagnosing advanced-stage cardiovascular diseases. Additionally, structural indices obtained through the analysis of cardiac motion have been found to be important in the early-stage assessment of structural heart diseases, such as hypertrophic cardiomyopathy and myocardial infarction. Estimating heterogeneous variations in cardiac motion through B-mode ultrasound imaging is a crucial component of patient care. Despite the benefits of such imaging techniques, motion estimation algorithms are susceptible to variability between vendors due to the lack of benchmark motion quantities. In contrast, finite element (FE) simulations of cardiac biomechanics leverage well-established constitutive models of the myocardium to ensure reproducibility. In this study, we developed a methodology to create synthetic B-mode ultrasound images from FE simulations. The proposed methodology provides a detailed representation of displacements and strains under complex mouse-specific loading protocols of the LV. A comparison between the synthetic images and FE simulations revealed qualitative similarity in displacement patterns, thereby yielding benchmark quantities to improve the reproducibility of motion estimation algorithms. Thus, the study provides a methodology to create an extensive repository of images describing complex motion patterns to facilitate the enhanced reproducibility of cardiac motion analysis.
AB - Brightness mode (B-mode) ultrasound is a common imaging modality in the clinical assessment of several cardiovascular diseases. The utility of ultrasound-based functional indices such as the ejection fraction (EF) and stroke volume (SV) is widely described in diagnosing advanced-stage cardiovascular diseases. Additionally, structural indices obtained through the analysis of cardiac motion have been found to be important in the early-stage assessment of structural heart diseases, such as hypertrophic cardiomyopathy and myocardial infarction. Estimating heterogeneous variations in cardiac motion through B-mode ultrasound imaging is a crucial component of patient care. Despite the benefits of such imaging techniques, motion estimation algorithms are susceptible to variability between vendors due to the lack of benchmark motion quantities. In contrast, finite element (FE) simulations of cardiac biomechanics leverage well-established constitutive models of the myocardium to ensure reproducibility. In this study, we developed a methodology to create synthetic B-mode ultrasound images from FE simulations. The proposed methodology provides a detailed representation of displacements and strains under complex mouse-specific loading protocols of the LV. A comparison between the synthetic images and FE simulations revealed qualitative similarity in displacement patterns, thereby yielding benchmark quantities to improve the reproducibility of motion estimation algorithms. Thus, the study provides a methodology to create an extensive repository of images describing complex motion patterns to facilitate the enhanced reproducibility of cardiac motion analysis.
KW - B-mode ultrasound
KW - Cardiac motion analysis
KW - finite element simulations
KW - synthetic image generation
UR - http://www.scopus.com/inward/record.url?scp=85214988694&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85214988694&partnerID=8YFLogxK
U2 - 10.1109/EMBC53108.2024.10782447
DO - 10.1109/EMBC53108.2024.10782447
M3 - Conference contribution
AN - SCOPUS:85214988694
T3 - Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
BT - 46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2024 - Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2024
Y2 - 15 July 2024 through 19 July 2024
ER -