Superior activity of the combination of histone deacetylase inhibitor LAQ824 and the FLT-3 kinase inhibitor PKC412 against human acute myelogenous leukemia cells with mutant FLT-3

Purva Bali, Prince George, Pamela Cohen, Jianguo Tao, Fei Guo, Celia Sigua, Anasuya Vishvanath, Anna Scuto, Srinivas Annavarapu, Warren Fiskus, Lynn Moscinski, Peter Atadja, Kapil Bhalla

Research output: Contribution to journalArticlepeer-review

120 Scopus citations

Abstract

Purpose: Mutant FLT-3 receptor tyrosine kinase is a client protein of the molecular chaperone heat shock protein 90 and is commonly present and contributes to the leukemia phenotype in acute myelogenous leukemia (AML). LAQ824, a cinnamyl hydroxamate histone deacetylase inhibitor, is known to induce acetylation and inhibition of heat shock protein 90. Here, we determined the effects of LAQ824 and/or PKC412 (a FLT-3 kinase inhibitor) on the levels of mutant FLT-3 and its downstream signaling, as well as growth arrest and cell-death of cultured and primary human AML cells. Experimental Design: The effect of LAQ824 and/or PKC412 treatment was determined on the levels of FLT-3 and phosphorylated (p)-FLT-3, on downstream pro-growth and pro-survival effectors, e.g., p-STAT5, p-AKT, and p-extracellular signal-regulated kinase (ERK) 1/2, and on the cell cycle status and apoptosis in the cultured MV4-11 and primary AML cells with mutant FLT-3. Results: Treatment with LAQ824 promoted proteasomal degradation and attenuation of the levels of FLT-3 and p-FLT-3, associated with cell cycle G1-phase accumulation and apoptosis of MV4-11 cells. This was accompanied by attenuation of p-STAT5, p-AKT, and p-ERK1/2 levels. STAT-5 DNA-binding activity and the levels of c-Myc and oncostatin M were also down-regulated. Cotreatment with LAQ824 and PKC412 synergistically induced apoptosis of MV4-11 cells and induced more apoptosis of the primary AML cells expressing mutant FLT-3. This was also associated with more attenuation of p-FLT-3, p-AKT, p-ERK1/2, and p-STAT5. Conclusions: The combination of LAQ824 and PKC412 is highly active against human AML cells with mutant FLT-3, which merits in vivo studies of the combination against human AML.

Original languageEnglish (US)
Pages (from-to)4991-4997
Number of pages7
JournalClinical Cancer Research
Volume10
Issue number15
DOIs
StatePublished - Aug 1 2004

ASJC Scopus subject areas

  • Medicine(all)

Fingerprint

Dive into the research topics of 'Superior activity of the combination of histone deacetylase inhibitor LAQ824 and the FLT-3 kinase inhibitor PKC412 against human acute myelogenous leukemia cells with mutant FLT-3'. Together they form a unique fingerprint.

Cite this