Abstract
Positron emission tomography (PET) radioligands for translocator protein 18 kDa (TSPO) are widely used to measure neuroinflammation, but controversy exists whether second-generation radioligands are superior to the prototypical agent 11 C-(R)-PK11195 in human imaging. This study sought to quantitatively measure the “signal to background” ratio (assessed as binding potential (BP ND )) of 11 C-(R)-PK11195 compared to one of the most promising second-generation radioligands, 11 C-DPA-713. Healthy subjects had dynamic PET scans and arterial blood measurements of radioligand after injection of either 11 C-(R)-PK11195 (16 subjects) or 11 C-DPA-713 (22 subjects). To measure the amount of specific binding, a subset of these subjects was scanned after administration of the TSPO blocking drug XBD173 (30–90 mg PO). 11 C-DPA-713 showed a significant sensitivity to genotype in brain, whereas 11 C-(R)-PK11195 did not. Lassen occupancy plot analysis revealed that the specific binding of 11 C-DPA-713 was much greater than that of 11 C-(R)-PK11195. The BP ND in high-affinity binders was about 10-fold higher for 11 C-DPA-713 (7.3) than for 11 C-(R)-PK11195 (0.75). Although the high specific binding of 11 C-DPA-713 suggests it is an ideal ligand to measure TSPO, we also found that its distribution volume increased over time, consistent with the accumulation of radiometabolites in brain.
Original language | English (US) |
---|---|
Pages (from-to) | 393-403 |
Number of pages | 11 |
Journal | Journal of Cerebral Blood Flow and Metabolism |
Volume | 38 |
Issue number | 3 |
DOIs | |
State | Published - Mar 1 2018 |
Keywords
- 18 kDa (TSPO)
- XBD173
- metabolite-corrected arterial input
- positron emission tomography
- rs6971 polymorphism
ASJC Scopus subject areas
- Neurology
- Clinical Neurology
- Cardiology and Cardiovascular Medicine