Subsea production two-phase flow modeling and control of pipeline and manifold assemblies

Amine Meziou, Majdi Chaari, Matthew Franchek, Karolos Grigoriadis, Reza Tafreshi, Behrouz Ebrahimi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Scopus citations

Abstract

Developed in this paper is a new approach to subsea production two-phase flow modeling and control of pipeline and manifold assemblies. For that purpose, a reduced-order model is developed for transient two-phase gas-liquid flow in pipelines. First, a mechanistic model is used to calculate the steady-state pressure drop and liquid holdup. From this model, effective fluid properties are calculated and used as arguments to the dissipative distributed parameter model. A modal approximation technique is then used to render the model into a rational polynomial form appropriate for time-domain analysis and controller design. A new low-frequency magnitude correction is applied to the approximated transfer functions providing an improved matching for the steady-state gain without affecting the dynamics of the system. The resulting low-dimensional two-phase flow model is then used to coordinate the arriving pressures at the manifold for different GVF levels through electro-hydraulic valves located at the wellheads.

Original languageEnglish (US)
Title of host publicationActive Control of Aerospace Structure; Motion Control; Aerospace Control; Assistive Robotic Systems; Bio-Inspired Systems; Biomedical/Bioengineering Applications; Building Energy Systems; Condition Based Monitoring; Control Design for Drilling Automation; Control of Ground Vehicles, Manipulators, Mechatronic Systems; Controls for Manufacturing; Distributed Control; Dynamic Modeling for Vehicle Systems; Dynamics and Control of Mobile and Locomotion Robots; Electrochemical Energy Systems
PublisherAmerican Society of Mechanical Engineers
ISBN (Electronic)9780791846186
DOIs
StatePublished - 2014
EventASME 2014 Dynamic Systems and Control Conference, DSCC 2014 - San Antonio, United States
Duration: Oct 22 2014Oct 24 2014

Publication series

NameASME 2014 Dynamic Systems and Control Conference, DSCC 2014
Volume1

Other

OtherASME 2014 Dynamic Systems and Control Conference, DSCC 2014
Country/TerritoryUnited States
CitySan Antonio
Period10/22/1410/24/14

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Mechanical Engineering
  • Industrial and Manufacturing Engineering

Fingerprint

Dive into the research topics of 'Subsea production two-phase flow modeling and control of pipeline and manifold assemblies'. Together they form a unique fingerprint.

Cite this