Streamlined production of genetically modified T cells with activation, transduction and expansion in closed-system G-Rex bioreactors

Christine Gagliardi, Mariam Khalil, Aaron E. Foster

Research output: Contribution to journalArticlepeer-review

12 Scopus citations

Abstract

Background: Gas Permeable Rapid Expansion (G-Rex) bioreactors have been shown to efficiently expand immune cells intended for therapeutic use, but do not address the complexity of the viral transduction step required for many engineered T-cell products. Here we demonstrate a novel method for transduction of activated T cells with Vectofusin-1 reagent. Transduction is accomplished in suspension, in G-Rex bioreactors. The simplified transduction step is integrated into a streamlined process that uses a single bioreactor with limited operator intervention. Methods: Peripheral blood mononuclear cells (PBMCs) from healthy donors were thawed, washed and activated with soluble anti-CD3 and anti-CD28 antibodies either in cell culture bags or in G-Rex bioreactors. Cells were cultured in TexMACS GMP medium with interleukin (IL)-7 and IL-15 and transduced with RetroNectin in bags or Vectorfusin-1 in the G-Rex. Total viable cell number, fold expansion, viability, transduction efficiency, phenotype and function were compared between the two processes. Results: The simplified process uses a single vessel from activation through harvest and achieves 56% transduction with 29-fold expansion in 11 days. The cells generated in the simplified process do not differ from cells produced in the conventional bag-based process functionally or phenotypically. Discussion: This study demonstrates that T cells can be transduced in suspension. Further, the conventional method of generating engineered T cells in bags for clinical use can be streamlined to a much simpler, less-expensive process without compromising the quality or function of the cell product.

Original languageEnglish (US)
Pages (from-to)1246-1257
Number of pages12
JournalCytotherapy
Volume21
Issue number12
DOIs
StatePublished - Dec 2019

Keywords

  • autologous
  • bioreactors
  • cell therapy
  • chimeric antigen receptor T cells

ASJC Scopus subject areas

  • Immunology and Allergy
  • Immunology
  • Oncology
  • Genetics(clinical)
  • Cell Biology
  • Cancer Research
  • Transplantation

Fingerprint

Dive into the research topics of 'Streamlined production of genetically modified T cells with activation, transduction and expansion in closed-system G-Rex bioreactors'. Together they form a unique fingerprint.

Cite this