TY - JOUR
T1 - Strain in the lateral ligaments of the ankle
AU - Renstrom, P.
AU - Wertz, M.
AU - Incavo, Stephen J.
AU - Pope, M.
AU - Ostgaard, H. C.
AU - Arms, S.
AU - Haugh, L.
PY - 1988/1/1
Y1 - 1988/1/1
N2 - Strain was measured in the normal anterior talofibular ligament (ATF) and the calcaneofibular ligament (CF) using Hall effect strain transducers in five cadaveric ankles. These measurements were made in both ligaments with the ankle in neutral position and with the foot moving from 10° dorsiflexion to 40° plantarflexion in an apparatus that permits physiologic motion. The ankle ligaments were then tested with the foot placed in six different positions that combined supination, pronation, external rotation, and internal rotation. In the neutral position, through a range of motion of 10° dorsiflexion to 40° plantarflexion, the anterior talofibular ligament underwent an increasing strain of 3.3%. No significant strain increase was found with internal rotation. The only significant difference from the strain at the neutral position was in external rotation, which decreased strain 1.9%. In all positions, increased strain occurred with increased plantarflexion. The calcaneofibular ligament was essentially isometric in the neutral position throughout the flexion arc. The calcaneofibular ligament strain was significantly increased by supination and external rotation. However, with increasing plantarflexion in these positions, the strain in the calcaneofibular ligament decreased. Therefore, plantarflexion has a relaxing effect on the calcaneofibular ligament. Thus, the anterior talofibular and calcaneofibular ligaments are synergistic, such that when one ligament is relaxed, the other is strained and vice versa.
AB - Strain was measured in the normal anterior talofibular ligament (ATF) and the calcaneofibular ligament (CF) using Hall effect strain transducers in five cadaveric ankles. These measurements were made in both ligaments with the ankle in neutral position and with the foot moving from 10° dorsiflexion to 40° plantarflexion in an apparatus that permits physiologic motion. The ankle ligaments were then tested with the foot placed in six different positions that combined supination, pronation, external rotation, and internal rotation. In the neutral position, through a range of motion of 10° dorsiflexion to 40° plantarflexion, the anterior talofibular ligament underwent an increasing strain of 3.3%. No significant strain increase was found with internal rotation. The only significant difference from the strain at the neutral position was in external rotation, which decreased strain 1.9%. In all positions, increased strain occurred with increased plantarflexion. The calcaneofibular ligament was essentially isometric in the neutral position throughout the flexion arc. The calcaneofibular ligament strain was significantly increased by supination and external rotation. However, with increasing plantarflexion in these positions, the strain in the calcaneofibular ligament decreased. Therefore, plantarflexion has a relaxing effect on the calcaneofibular ligament. Thus, the anterior talofibular and calcaneofibular ligaments are synergistic, such that when one ligament is relaxed, the other is strained and vice versa.
UR - http://www.scopus.com/inward/record.url?scp=0023812606&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0023812606&partnerID=8YFLogxK
U2 - 10.1177/107110078800900201
DO - 10.1177/107110078800900201
M3 - Article
C2 - 3224901
AN - SCOPUS:0023812606
SN - 0198-0211
VL - 9
SP - 59
EP - 63
JO - Foot and Ankle
JF - Foot and Ankle
IS - 2
ER -