Somatic instability of the expanded CTG triplet repeat in myotonic dystrophy type 1 is a heritable quantitative trait and modifier of disease severity

Fernando Morales, Jillian M. Couto, Catherine F. Higham, Grant Hogg, Patricia Cuenca, Claudia Braida, Richard H. Wilson, Berit Adam, Gerardo Del Valle, Roberto Brian, Mauricio Sittenfeld, Tetsuo Ashizawa, Alison Wilcox, Douglas E. Wilcox, Darren G. Monckton

Research output: Contribution to journalArticle

97 Scopus citations

Abstract

Deciphering the contribution of genetic instability in somatic cells is critical to our understanding of many human disorders. Myotonic dystrophy type 1 (DM1) is one such disorder that is caused by the expansion of a CTG repeat that shows extremely high levels of somatic instability. This somatic instability has compromised attempts to measure intergenerational repeat dynamics and infer genotype-phenotype relationships. Using single-molecule PCR, we have characterized more than 17 000 de novo somatic mutations from a large cohort of DM1 patients. These data reveal that the estimated progenitor allele length is the major modifier of age of onset. We find no evidence for a threshold above which repeat length does not contribute toward age at onset, suggesting pathogenesis is not constrained to a simple molecular switch such as nuclear retention of the DMPK transcript or haploinsufficiency for DMPK and/or SIX5. Importantly, we also show that age at onset is further modified by the level of somatic instability; patients in whom the repeat expands more rapidly, develop the symptoms earlier. These data establish a primary role for somatic instability in DM1 severity, further highlighting it as a therapeutic target. In addition, we show that the level of instability is highly heritable, implying a role for individual-specific trans-acting genetic modifiers. Identifying these trans-acting genetic modifiers will facilitate the formulation of novel therapies that curtail the accumulation of somatic expansions and may provide clues to the role these factors play in the development of cancer, aging and inherited disease in the general population.

Original languageEnglish (US)
Article numberdds185
Pages (from-to)3558-3567
Number of pages10
JournalHuman Molecular Genetics
Volume21
Issue number16
DOIs
StatePublished - Aug 2012

ASJC Scopus subject areas

  • Molecular Biology
  • Genetics
  • Genetics(clinical)

Fingerprint Dive into the research topics of 'Somatic instability of the expanded CTG triplet repeat in myotonic dystrophy type 1 is a heritable quantitative trait and modifier of disease severity'. Together they form a unique fingerprint.

Cite this