Sodium periodate, sodium chlorite, and organic hydroperoxides as hydroxylating agents in steroid hydroxylation reactions catalyzed by adrenocortical microsomal and mitochondrial cytochrome P450

Jan Åke Gustafsson, Eugene G. Hrycay, Lars Ernster

Research output: Contribution to journalArticle

47 Scopus citations

Abstract

This study has investigated the mechanism of steroid hydroxylation in bovine adrenocortical microsomes and mitochondria by employing NaIO4, NaClO2, and various organic hydroperoxides as hydroxylating agents and comparing the reaction rates and steroid products formed with those of the NADPH-dependent reaction. In the microsomal hydroxylating system, progesterone, 17α-hydroxyprogesterone, and androstenedione were found to act as substrates. Progesterone was chosen as the model substrate and was converted mainly to the 21-hydroxylated derivative in the presence of microsomal fractions fortified with hydroxylating agent. Using saturating levels of hydroxylating agent, NaIO4 was found to be the most effective in promoting progesterone hydroxylation followed by cumene hydroperoxide, t-butyl hydroperoxide, NADPH, NaClO2, and pregnenolone 17α-hydroperoxide. Evidence for cytochrome P450 involvement included a marked inhibition of the activity by substrates and modifiers of cytochrome P450 and by reagents that convert cytochrome P450 to cytochrome P420. Steroid hydroxylation was studied in adrenocortical mitochondria that had been previously depleted of endogenous pyridine nucleotides by aging for 1 h at 30 dgC in a phosphate-supplemented medium. Androstenedione was converted to its respective 6β-, 11β-, 16β-, and 19-hydroxylated derivatives when incubated with aged mitochondrial fractions fortified with hydroxylating agent whereas progesterone was hydroxylated in the 1β-, 6β-, and 15β- positions. These hydroxylations were completely abolished by preheating the mitochondria for 5 min at 95 dgC prior to assay, indicating the enzymic nature of the reactions. Deoxycorticosterone and deoxycortisol were effective substrates for NADPH-dependent enzymic 11β-hydroxylation but were extensively degraded nonenzymically to unidentified products in the presence of NaIO4 and hydroxylating agents other than NADPH and consequently could not be utilized as substrates in these reactions. Using androstenedione as substrate, NaIO4 was the most effective hydroxylating agent, followed by cumene hydroperoxide, NaClO2, t-butyl hydroperoxide, and NADPH. These hydroxylations were inhibited by substrates and modifiers of cytochrome P450 and by reagents that convert cytochrome P450 to cytochrome P420. A mechanism for steroid hydroxylation in adrenocortical microsomes and mitochondria is proposed in which the ferryl ion (compound I) of cytochrome P450 functions as the common "activated oxygen" species.

Original languageEnglish (US)
Pages (from-to)440-453
Number of pages14
JournalArchives of Biochemistry and Biophysics
Volume174
Issue number2
DOIs
StatePublished - Jan 1 1976

ASJC Scopus subject areas

  • Biophysics
  • Biochemistry
  • Molecular Biology

Fingerprint Dive into the research topics of 'Sodium periodate, sodium chlorite, and organic hydroperoxides as hydroxylating agents in steroid hydroxylation reactions catalyzed by adrenocortical microsomal and mitochondrial cytochrome P<sub>450</sub>'. Together they form a unique fingerprint.

Cite this