Skull Segmentation from CBCT Images via Voxel-Based Rendering

Qin Liu, Chunfeng Lian, Deqiang Xiao, Lei Ma, Han Deng, Xu Chen, Dinggang Shen, Pew Thian Yap, James J. Xia

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

Skull segmentation from three-dimensional (3D) cone-beam computed tomography (CBCT) images is critical for the diagnosis and treatment planning of the patients with craniomaxillofacial (CMF) deformities. Convolutional neural network (CNN)-based methods are currently dominating volumetric image segmentation, but these methods suffer from the limited GPU memory and the large image size (e.g., 512 × 512 × 448). Typical ad-hoc strategies, such as down-sampling or patch cropping, will degrade segmentation accuracy due to insufficient capturing of local fine details or global contextual information. Other methods such as Global-Local Networks (GLNet) are focusing on the improvement of neural networks, aiming to combine the local details and the global contextual information in a GPU memory-efficient manner. However, all these methods are operating on regular grids, which are computationally inefficient for volumetric image segmentation. In this work, we propose a novel VoxelRend-based network (VR-U-Net) by combining a memory-efficient variant of 3D U-Net with a voxel-based rendering (VoxelRend) module that refines local details via voxel-based predictions on non-regular grids. Establishing on relatively coarse feature maps, the VoxelRend module achieves significant improvement of segmentation accuracy with a fraction of GPU memory consumption. We evaluate our proposed VR-U-Net in the skull segmentation task on a high-resolution CBCT dataset collected from local hospitals. Experimental results show that the proposed VR-U-Net yields high-quality segmentation results in a memory-efficient manner, highlighting the practical value of our method.

Original languageEnglish (US)
Title of host publicationMachine Learning in Medical Imaging - 12th International Workshop, MLMI 2021, Held in Conjunction with MICCAI 2021, Proceedings
EditorsChunfeng Lian, Xiaohuan Cao, Islem Rekik, Xuanang Xu, Pingkun Yan
PublisherSpringer Science and Business Media Deutschland GmbH
Pages615-623
Number of pages9
ISBN (Print)9783030875886
DOIs
StatePublished - 2021
Event12th International Workshop on Machine Learning in Medical Imaging, MLMI 2021, held in conjunction with 24th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2021 - Virtual, Online
Duration: Sep 27 2021Sep 27 2021

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume12966 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference12th International Workshop on Machine Learning in Medical Imaging, MLMI 2021, held in conjunction with 24th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2021
CityVirtual, Online
Period9/27/219/27/21

Keywords

  • CBCT image
  • High-resolution segmentation
  • VoxelRend

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Computer Science(all)

Fingerprint

Dive into the research topics of 'Skull Segmentation from CBCT Images via Voxel-Based Rendering'. Together they form a unique fingerprint.

Cite this