Abstract
LKB1 is activated by forming a heterotrimeric complex with STRAD and MO25. Recent studies suggest that LKB1 has pro-oncogenic functions, besides acting as a tumor suppressor. How the LKB1 activity is maintained and how LKB1 regulates cancer development are largely unclear. Here we show that K63-linked LKB1 polyubiquitination by Skp2-SCF ubiquitin ligase is critical for LKB1 activation by maintaining LKB1-STRAD-MO25 complex integrity. We further demonstrate that oncogenic Ras acts upstream of Skp2 to promote LKB1 polyubiquitination by activating Skp2-SCF ubiquitin ligase. Moreover, Skp2-mediated LKB1 polyubiquitination is required for energy-stress-induced cell survival. We also detected overexpression of Skp2 and LKB1 in late-stage hepatocellular carcinoma (HCC), and their overexpression predicts poor survival outcomes. Finally, we show that Skp2-mediated LKB1 polyubiquitination is important for HCC tumor growth invivo. Our study provides new insights into the upstream regulation of LKB1 activation and suggests a potential target, the Ras/Skp2/LKB1 axis, for cancer therapy.
Original language | English (US) |
---|---|
Pages (from-to) | 1022-1033 |
Number of pages | 12 |
Journal | Molecular Cell |
Volume | 57 |
Issue number | 6 |
DOIs | |
State | Published - Mar 19 2015 |
ASJC Scopus subject areas
- Molecular Biology
- Cell Biology