Single-Cell RNA Sequencing Reveals Extensive Heterogeneity and Unique Gene Trajectories in Non-Transformed and Transformed Human Lung Epithelial Cells: Insights into the Role of LncRNAs in Tumor Heterogeneity

Sokviseth Moeng, Andres D. Chamorro-Parejo, Minsun S. Jeon, James J. Cai, Kenneth S. Ramos

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Lung cancer exhibits substantial inter- and intra-tumor heterogeneity, with features that present significant challenges in advancing biomarker discovery and the development of targeted therapeutics. To fill this gap, we employed single-cell RNA sequencing (scRNA-seq) and advanced bioinformatics tools to evaluate the transcriptomic heterogeneity of immortalized, non-transformed (BEAS2B) and transformed (H460) lung epithelial cell lines and their responses to carcinogen challenge. Gene expression profiles resolved four primary clusters further discretized into unique subclusters based on genetic signatures and phenotypic profiles. Profiles of long non-coding RNAs (lncRNAs) identified microRNA host genes, antisense RNA genes, divergent transcript, and long intergenic non-coding RNAs as contributors to cellular heterogeneity. These findings indicate that distinct patterns of gene expression, remarkably in lncRNAs, define cellular heterogeneity in non-transformed versus transformed cells. These features can be exploited for the development of therapies directed at specific cell subpopulations in precancerous lesions and within lung tumors.

Original languageEnglish (US)
Article number1690
JournalInternational journal of molecular sciences
Volume26
Issue number4
DOIs
StatePublished - Feb 2025

Keywords

  • benzo(a)pyrene
  • carcinogen
  • cellular heterogeneity
  • lncRNAs
  • lung cancer
  • protein-coding genes
  • single-cell RNA sequencing

ASJC Scopus subject areas

  • Catalysis
  • Molecular Biology
  • Spectroscopy
  • Computer Science Applications
  • Physical and Theoretical Chemistry
  • Organic Chemistry
  • Inorganic Chemistry

Fingerprint

Dive into the research topics of 'Single-Cell RNA Sequencing Reveals Extensive Heterogeneity and Unique Gene Trajectories in Non-Transformed and Transformed Human Lung Epithelial Cells: Insights into the Role of LncRNAs in Tumor Heterogeneity'. Together they form a unique fingerprint.

Cite this