Abstract
Spherical and non-spherical wax microparticles are generated by employing a facile two-step droplet microfluidic process which consists of the formation of molten wax microdroplets in a flow-focusing microchannel and their subsequent off-chip crystallization and deformation via microdroplet impingement on an immiscible liquid interface. Key parameters on the formation of molten wax microdroplets in a microfluidic channel are the viscosity of the molten wax and the interfacial tension between the dispersed and continuous fluids. A cursory phase diagram of wax morphology transition is depicted depending on the Capillary number and the Stefan number during the impact process. A combination of numerical simulation and analytical modeling is carried out to understand the physics underlying the deformation and crystallization process of the molten wax. The deformation of wax microdroplets is dominated by the viscous and thermal effects rather than the gravitational and buoyancy effects. Non-isothermal crystallization kinetics of the wax illustrates the time dependent thermal effects on the droplet deformation and crystallization. The work presented here will benefit those interested in the design and production criteria of soft non-spherical particles (i.e., alginate gels, wax, and polymer particles) with the aid of time and temperature mediated solidification and off-chip crosslinking.
Original language | English (US) |
---|---|
Article number | 064114 |
Journal | Biomicrofluidics |
Volume | 9 |
Issue number | 6 |
DOIs | |
State | Published - Nov 1 2015 |
ASJC Scopus subject areas
- Biomedical Engineering
- Materials Science(all)
- Condensed Matter Physics
- Fluid Flow and Transfer Processes
- Colloid and Surface Chemistry