Sex differences in exercise-induced physiological myocardial hypertrophy are modulated by oestrogen receptor beta

Elke Dworatzek, Shokoufeh Mahmoodzadeh, Carola Schubert, Christina Westphal, Joachim Leber, Angelika Kusch, Georgios Kararigas, Daniela Fliegner, Maryline Moulin, Renée Ventura-Clapier, Jan Ake Gustafsson, Mercy M. Davidson, Duska Dragun, Vera Regitz-Zagrosek

Research output: Contribution to journalArticlepeer-review

58 Scopus citations


AimsOestrogen receptor alpha (ERα) and beta (ERβ) are involved in the regulation of pathological myocardial hypertrophy (MH). We hypothesize that both ER are also involved in physiological MH. Therefore, we investigated the role of ER in exercise-induced physiological MH in loss-of-function models and studied potential mechanisms of action.Methods and resultsWe performed 1 and 8 weeks of voluntary cage wheel running (VCR) with male and female C57BL/6J wild-type (WT), ERα-and ERβ-deleted mice. In line with other studies, female WT mice ran more than males (P ≤ 0.001). After 8 weeks of VCR, both sexes showed an increase in left ventricular mass (females: P ≤ 0.01 and males: P ≤ 0.05) with more pronounced MH in females (P < 0.05). As previously shown, female ERα-deleted mice run less than female WT mice (P ≤ 0.001). ERβ-deleted mice showed similar running performance as WT mice (females vs. male: P ≤ 0.001), but did not develop MH. Only female WT mice showed an increase in phosphorylation of serine/threonine kinase (AKT), ERK1/2, p38-mitogen-activated protein kinase (MAPK), and ribosomal protein s6, as well as an increase in the expression of key regulators of mitochondrial function and mitochondrial respiratory chain proteins (complexes I, III, and V) after VCR. However, ERβ deletion abolished all observed sex differences. Mitochondrial remodelling occurred in female WT-VCR mice, but not in female ERβ-deleted mice.ConclusionThe sex-specific response of the heart to exercise is modulated by ERβ. The greater increase in physiological MH in females is mediated by induction of AKT signalling, MAPK pathways, protein synthesis, and mitochondrial adaptation via ERβ.

Original languageEnglish (US)
Pages (from-to)418-428
Number of pages11
JournalCardiovascular Research
Issue number3
StatePublished - Jun 1 2014


  • Exercise-induced physiological MH
  • Hypertrophy associated
  • Mitochondrial adaptation
  • Oestrogen receptor
  • Sex
  • Signalling pathway

ASJC Scopus subject areas

  • Cardiology and Cardiovascular Medicine
  • Physiology (medical)
  • Physiology


Dive into the research topics of 'Sex differences in exercise-induced physiological myocardial hypertrophy are modulated by oestrogen receptor beta'. Together they form a unique fingerprint.

Cite this