Self-assembling structures and thin-film microscopic morphologies of amphiphilic rod-coil block oligomers

Hongbo Li, Qingtao Liu, Lidong Qin, Miao Xu, Xiankun Lin, Shengyan Yin, Lixin Wu, Zhongmin Su, Jiacong Shen

Research output: Contribution to journalArticlepeer-review

13 Scopus citations

Abstract

This paper examines the influences of solvent evaporation and atmosphere humidity on self-assembling structures and thin-film microscopic morphologies of amphiphilic rod-coil block oligomers (EOnOPV) containing conjugated oligo(phenylene vinylene) dimer (OPV) coupled to poly(ethylene oxide) (PEO; n, the average number of ethylene oxides, is 16, 12, 7, and 3, respectively) on hydrophilic substrates. Atomic force microscopy (AFM), UV-vis absorption, and small angle X-ray diffraction are employed to investigate the thin-film morphology and structure. Solvent evaporation and atmosphere humidity are found to exert a strong influence on thin-film morphology and structure. Under the condition of quick evaporation and dry atmosphere, all EOnOPV oligomers form the monolayer islands. Increasing the solute volume, both EO 16OPV and EO12OPV oligomers can form the polar lamellas with a head-to-tail packing arrangement. Under the condition of slow evaporation and humid atmosphere, EO16OPV and EO12OPV may self-assembly into curvy nanoribbons with well-defined width and curvature radii on mica, while EO7OPV and EO3OPV with the shorter PEO coils do not form. A symmetric bilayer structure for the ribbons is proposed. Plausible reasons for the variation in thin-film morphology are discussed, based on the results obtained from investigation of PEO coil length, solvent evaporation, and atmosphere humidity effects.

Original languageEnglish (US)
Pages (from-to)488-497
Number of pages10
JournalJournal of Colloid And Interface Science
Volume289
Issue number2
DOIs
StatePublished - Sep 15 2005

Keywords

  • AFM image
  • Humidity
  • Rod-coil block oligomer
  • Self-assembling structure
  • Solvent evaporation
  • Thin-film microscopic morphology

ASJC Scopus subject areas

  • Colloid and Surface Chemistry
  • Physical and Theoretical Chemistry
  • Surfaces and Interfaces

Fingerprint

Dive into the research topics of 'Self-assembling structures and thin-film microscopic morphologies of amphiphilic rod-coil block oligomers'. Together they form a unique fingerprint.

Cite this