Selectivity of natural, synthetic and environmental estrogens for zebrafish estrogen receptors

Caroline Pinto, Marina Grimaldi, Abdelhay Boulahtouf, Farzad Pakdel, François Brion, Sélim Aït-Aïssa, Vincent Cavaillès, William Bourguet, Jan Ake Gustafsson, Maria Bondesson, Patrick Balaguer

Research output: Contribution to journalArticlepeer-review

40 Scopus citations

Abstract

Zebrafish, Danio rerio, is increasingly used as an animal model to study the effects of pharmaceuticals and environmental estrogens. As most of these estrogens have only been tested on human estrogen receptors (ERs), it is necessary to measure their effects on zebrafish ERs. In humans there are two distinct nuclear ERs (hERα and hERβ), whereas the zebrafish genome encodes three ERs, zfERα and two zfERβs (zfERβ1 and zfERβ2). In this study, we established HeLa-based reporter cell lines stably expressing each of the three zfERs. We first reported that estrogens more efficiently activate the zfERs at 28. °C as compared to 37. °C, thus reflecting the physiological temperature of zebrafish in wildlife. We then showed significant differences in the ability of agonist and antagonist estrogens to modulate activation of the three zfER isotypes in comparison to hERs. Environmental compounds (bisphenol A, alkylphenols, mycoestrogens) which are hER panagonists and hERβ selective agonists displayed greater potency for zfERα as compared to zfERβs. Among hERα selective synthetic agonists, PPT did not activate zfERα while 16α-LE2 was the most zfERα selective compound. Altogether, these results confirm that all hER ligands control in a similar manner the transcriptional activity of zfERs although significant differences in selectivity were observed among subtypes. The zfER subtype selective ligands that we identified thus represent new valuable tools to dissect the physiological roles of the different zfERs. Finally, our work also points out that care has to be taken in transposing the results obtained using the zebrafish as a model for human physiopathology.

Original languageEnglish (US)
Pages (from-to)60-69
Number of pages10
JournalToxicology and Applied Pharmacology
Volume280
Issue number1
DOIs
StatePublished - Oct 1 2014

Keywords

  • Endocrine disruptors
  • Estrogen receptors
  • Reporter cell lines
  • Selective estrogens
  • Zebrafish

ASJC Scopus subject areas

  • Pharmacology
  • Toxicology

Fingerprint

Dive into the research topics of 'Selectivity of natural, synthetic and environmental estrogens for zebrafish estrogen receptors'. Together they form a unique fingerprint.

Cite this