TY - JOUR
T1 - S-adenosylmethionine inhibits la ribonucleoprotein domain family member 1 in murine liver and human liver cancer cells
AU - Ramani, Komal
AU - Robinson, Aaron E.
AU - Berlind, Joshua
AU - Fan, Wei
AU - Abeynayake, Aushinie
AU - Binek, Aleksandra
AU - Barbier-Torres, Lucía
AU - Noureddin, Mazen
AU - Nissen, Nicholas N.
AU - Yildirim, Zehra
AU - Erbay, Ebru
AU - Mato, José M.
AU - Van Eyk, Jennifer E.
AU - Lu, Shelly C.
N1 - Publisher Copyright:
© 2021 American Association for the Study of Liver Diseases.
PY - 2022/2
Y1 - 2022/2
N2 - Background and Aims: Methionine adenosyltransferase 1A (MAT1A) is responsible for S-adenosylmethionine (SAMe) biosynthesis in the liver. Mice lacking Mat1a have hepatic SAMe depletion and develop NASH and HCC spontaneously. Several kinases are activated in Mat1a knockout (KO) mice livers. However, characterizing the phospho-proteome and determining whether they contribute to liver pathology remain open for study. Our study aimed to provide this knowledge. Approach and Results: We performed phospho-proteomics in Mat1a KO mice livers with and without SAMe treatment to identify SAMe-dependent changes that may contribute to liver pathology. Our studies used Mat1a KO mice at different ages treated with and without SAMe, cell lines, in vitro translation and kinase assays, and human liver specimens. We found that the most striking change was hyperphosphorylation and increased content of La-related protein 1 (LARP1), which, in the unphosphorylated form, negatively regulates translation of 5′-terminal oligopyrimidine (TOP)-containing mRNAs. Consistently, multiple TOP proteins are induced in KO livers. Translation of TOP mRNAs ribosomal protein S3 and ribosomal protein L18 was enhanced by LARP1 overexpression in liver cancer cells. We identified LARP1-T449 as a SAMe-sensitive phospho-site of cyclin-dependent kinase 2 (CDK2). Knocking down CDK2 lowered LARP1 phosphorylation and prevented LARP1-overexpression–mediated increase in translation. LARP1-T449 phosphorylation induced global translation, cell growth, migration, invasion, and expression of oncogenic TOP-ribosomal proteins in HCC cells. LARP1 expression is increased in human NASH and HCC. Conclusions: Our results reveal a SAMe-sensitive mechanism of LARP1 phosphorylation that may be involved in the progression of NASH to HCC.
AB - Background and Aims: Methionine adenosyltransferase 1A (MAT1A) is responsible for S-adenosylmethionine (SAMe) biosynthesis in the liver. Mice lacking Mat1a have hepatic SAMe depletion and develop NASH and HCC spontaneously. Several kinases are activated in Mat1a knockout (KO) mice livers. However, characterizing the phospho-proteome and determining whether they contribute to liver pathology remain open for study. Our study aimed to provide this knowledge. Approach and Results: We performed phospho-proteomics in Mat1a KO mice livers with and without SAMe treatment to identify SAMe-dependent changes that may contribute to liver pathology. Our studies used Mat1a KO mice at different ages treated with and without SAMe, cell lines, in vitro translation and kinase assays, and human liver specimens. We found that the most striking change was hyperphosphorylation and increased content of La-related protein 1 (LARP1), which, in the unphosphorylated form, negatively regulates translation of 5′-terminal oligopyrimidine (TOP)-containing mRNAs. Consistently, multiple TOP proteins are induced in KO livers. Translation of TOP mRNAs ribosomal protein S3 and ribosomal protein L18 was enhanced by LARP1 overexpression in liver cancer cells. We identified LARP1-T449 as a SAMe-sensitive phospho-site of cyclin-dependent kinase 2 (CDK2). Knocking down CDK2 lowered LARP1 phosphorylation and prevented LARP1-overexpression–mediated increase in translation. LARP1-T449 phosphorylation induced global translation, cell growth, migration, invasion, and expression of oncogenic TOP-ribosomal proteins in HCC cells. LARP1 expression is increased in human NASH and HCC. Conclusions: Our results reveal a SAMe-sensitive mechanism of LARP1 phosphorylation that may be involved in the progression of NASH to HCC.
UR - http://www.scopus.com/inward/record.url?scp=85121425563&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85121425563&partnerID=8YFLogxK
U2 - 10.1002/hep.32130
DO - 10.1002/hep.32130
M3 - Article
C2 - 34449924
AN - SCOPUS:85121425563
SN - 0270-9139
VL - 75
SP - 280
EP - 296
JO - Hepatology
JF - Hepatology
IS - 2
ER -