RIPK3 promotes sepsis-induced acute kidney injury via mitochondrial dysfunction

Angara Sureshbabu, Edwin Patino, Kevin C. Ma, Kristian Laursen, Eli J. Finkelsztein, Oleh Akchurin, Thangamani Muthukumar, Stefan W. Ryter, Lorraine Gudas, Augustine M.K. Choi, Mary E. Choi

Research output: Contribution to journalArticlepeer-review

151 Scopus citations

Abstract

Sepsis causes acute kidney injury (AKI) in critically ill patients, although the pathophysiology remains unclear. The receptor-interacting protein kinase-3 (RIPK3), a cardinal regulator of necroptosis, has recently been implicated in the pathogenesis of human disease. In mice subjected to polymicrobial sepsis, we demonstrate that RIPK3 promotes sepsis-induced AKI. Utilizing genetic deletion and biochemical approaches in vitro and in vivo, we identify a potentially novel pathway by which RIPK3 aggravates kidney tubular injury independently of the classical mixed lineage kinase domain-like protein-dependent (MLKL-dependent) necroptosis pathway. In kidney tubular epithelial cells, we show that RIPK3 promotes oxidative stress and mitochondrial dysfunction involving upregulation of NADPH oxidase-4 (NOX4) and inhibition of mitochondrial complex I and -III, and that RIPK3 and NOX4 are critical for kidney tubular injury in vivo. Furthermore, we demonstrate that RIPK3 is required for increased mitochondrial translocation of NOX4 in response to proinflammatory stimuli, by a mechanism involving protein-protein interactions. Finally, we observed elevated urinary and plasma RIPK3 levels in human patients with sepsis-induced AKI, representing potential markers of this condition. In conclusion, we identify a pathway by which RIPK3 promotes kidney tubular injury via mitochondrial dysfunction, independently of MLKL, which may represent a promising therapeutic target in sepsis-induced AKI.

Original languageEnglish (US)
JournalJCI insight
Volume3
Issue number11
DOIs
StatePublished - Jun 7 2018

Keywords

  • Cell Biology
  • Mitochondria
  • Molecular pathology
  • Nephrology
  • Signal transduction

ASJC Scopus subject areas

  • General Medicine

Fingerprint

Dive into the research topics of 'RIPK3 promotes sepsis-induced acute kidney injury via mitochondrial dysfunction'. Together they form a unique fingerprint.

Cite this