Abstract
Both photoswitchable fluorescent nanoparticles and photoactivatable fluorescent proteins have been used for super-resolution far-field imaging on the nanometer scale, but the photoactivating wavelength for such photochemical events generally falls in the near-UV (NUV) region (<420 nm), which is not preferred in cellular imaging. However, using two near-IR (NIR) photons that are lower in energy, we can circumvent such problems and replace NUV single-photon excitations (e.g., 390 nm) with NIR two-photon excitations (e.g., 780 nm). Thus, we have demonstrated that alternating 780 nm NIR two-photon and 488 nm single-photon excitations induces reversible on-off fluorescence switching of immunotargeted nanoparticles in the human breast cancer cell line SK-BR-3. Herein, two-photon absorption not only caused spiropyran-merocyanine photoisomerization within the particles but also imparted red fluorescence. In comparison with single-photon NUV excitations, two-photon NIR laser excitations can potentially reduce absorption-related photodamage to living systems because cellular systems absorb much more weakly in the NIR.
Original language | English (US) |
---|---|
Pages (from-to) | 365-372 |
Number of pages | 8 |
Journal | Journal of the American Chemical Society |
Volume | 133 |
Issue number | 2 |
DOIs | |
State | Published - Jan 19 2011 |
ASJC Scopus subject areas
- Catalysis
- Chemistry(all)
- Biochemistry
- Colloid and Surface Chemistry