Abstract
Background: Telomeres consist of repetitive (TTAGGG) DNA sequences that are maintained by the multisubunit telomerase ribonucleoprotein. Telomerase consists of an RNA, which serves as template for the sequence tracts, and a catalytic subunit that functions in reverse transcription of the RNA template. Cloning and characterization of the human catalytic subunit of telomerase (hTERT) has supported a role in cell transformation. How telomerase activity is regulated, however, is largely unknown. Results: We show here that hTERT associates directly with the c-Abl protein tyrosine kinase. We also found that c-Abl phosphorylates hTERT and inhibits hTERT activity. Moreover, our findings demonstrate that exposure of cells to ionizing radiation induces tyrosine phosphorylation of hTERT by a c-Abl-dependent mechanism. The functional significance of the c-Abl-hTERT interaction is supported by the demonstration that cells deficient in c-Abl show telomere lengthening. Conclusions: The ubiquitously expressed c-Abl tyrosine kinase is activated by DNA double-strand breaks. Our finding of telomere lengthening in c-Abl-deficient cells and the functional interactions between c-Abl and hTERT support a role for c-Abl in the regulation of telomerase function.
Original language | English (US) |
---|---|
Pages (from-to) | 568-575 |
Number of pages | 8 |
Journal | Current Biology |
Volume | 10 |
Issue number | 10 |
DOIs | |
State | Published - May 1 2000 |
ASJC Scopus subject areas
- Neuroscience(all)
- Biochemistry, Genetics and Molecular Biology(all)
- Agricultural and Biological Sciences(all)