TY - JOUR
T1 - Recombinant methionyl human leptin administration activates signal transducer and activator of transcription 3 signaling in peripheral blood mononuclear cells in vivo and regulates soluble tumor necrosis factor-α receptor levels in humans with relative leptin deficiency
AU - Chan, Jean L.
AU - Moschos, Stergios J.
AU - Bullen, John
AU - Heist, Kathleen
AU - Li, Xian
AU - Kim, Young Bum
AU - Kahn, Barbara B.
AU - Mantzoros, Christos S.
N1 - Copyright:
Copyright 2008 Elsevier B.V., All rights reserved.
PY - 2005/3
Y1 - 2005/3
N2 - Studies of congenital complete leptin deficiency in animals and humans support a role for leptin in regulating immune function. Whether acquired relative leptin deficiency affects immunological parameters in healthy humans remains unknown. We thus used experimental models of relative leptin deficiency and recombinant methionyl human leptin (r-metHuLeptin) administration in humans to investigate whether r-metHuLeptin would activate signaling pathways in peripheral blood mononuclear cells (PBMCs) and whether acquired relative leptin deficiency and/or increasing circulating leptin levels into the physiologic range would change PBMC subpopulations and cytokines important in the T-helper cell and systemic immune responses. We found that r-metHuLeptin administration to healthy humans activates signal transducer and activator of transcription-3 signaling in PBMCs in vivo. Neither short-term leptin deficiency, induced by 3-d complete fasting, nor physiologic r-metHuLeptin replacement for the same period of time had a major effect on PBMC subpopulations or serum cytokines in healthy men. In contrast, normalizing serum leptin levels over 8 wk in lean women with relative leptin deficiency for 5.1 ± 1.4 yr (mean ± SE) due to chronic energy deficit increased soluble TNFα receptor levels, indicating activation of the TNFα system. These findings suggest that relative leptin deficiency due to more long-term energy deprivation is associated with defects in immunological parameters that may be corrected with exogenous r-metHuLeptin administration. Further studies are warranted to assess the implications of acquired relative hypoleptinemia and/or r-metHuLeptin administration on the immunosuppression associated with energy- and leptin-deficient states in humans.
AB - Studies of congenital complete leptin deficiency in animals and humans support a role for leptin in regulating immune function. Whether acquired relative leptin deficiency affects immunological parameters in healthy humans remains unknown. We thus used experimental models of relative leptin deficiency and recombinant methionyl human leptin (r-metHuLeptin) administration in humans to investigate whether r-metHuLeptin would activate signaling pathways in peripheral blood mononuclear cells (PBMCs) and whether acquired relative leptin deficiency and/or increasing circulating leptin levels into the physiologic range would change PBMC subpopulations and cytokines important in the T-helper cell and systemic immune responses. We found that r-metHuLeptin administration to healthy humans activates signal transducer and activator of transcription-3 signaling in PBMCs in vivo. Neither short-term leptin deficiency, induced by 3-d complete fasting, nor physiologic r-metHuLeptin replacement for the same period of time had a major effect on PBMC subpopulations or serum cytokines in healthy men. In contrast, normalizing serum leptin levels over 8 wk in lean women with relative leptin deficiency for 5.1 ± 1.4 yr (mean ± SE) due to chronic energy deficit increased soluble TNFα receptor levels, indicating activation of the TNFα system. These findings suggest that relative leptin deficiency due to more long-term energy deprivation is associated with defects in immunological parameters that may be corrected with exogenous r-metHuLeptin administration. Further studies are warranted to assess the implications of acquired relative hypoleptinemia and/or r-metHuLeptin administration on the immunosuppression associated with energy- and leptin-deficient states in humans.
UR - http://www.scopus.com/inward/record.url?scp=15944384648&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=15944384648&partnerID=8YFLogxK
U2 - 10.1210/jc.2004-1823
DO - 10.1210/jc.2004-1823
M3 - Article
C2 - 15613409
AN - SCOPUS:15944384648
SN - 0021-972X
VL - 90
SP - 1625
EP - 1631
JO - Journal of Clinical Endocrinology and Metabolism
JF - Journal of Clinical Endocrinology and Metabolism
IS - 3
ER -