@inproceedings{e192c1543b034ef3ba2414888a127349,
title = "Quantifying and reducing uncertainties in cancer therapy",
abstract = "There are two basic sources of uncertainty in cancer chemotherapy: how much of the therapeutic agent reaches the cancer cells, and how effective it is in reducing or controlling the tumor when it gets there. There is also a concern about adverse effects of the therapy drug. Similarly in external-beam radiation therapy or radionuclide therapy, there are two sources of uncertainty: delivery and efficacy of the radiation absorbed dose, and again there is a concern about radiation damage to normal tissues. The therapy operating characteristic (TOC) curve, developed in the context of radiation therapy, is a plot of the probability of tumor control vs. the probability of normal-tissue complications as the overall radiation dose level is varied, e.g. by varying the beam current in external-beam radiotherapy or the total injected activity in radionuclide therapy. The TOC can be applied to chemotherapy with the administered drug dosage as the variable. The area under a TOC curve (AUTOC) can be used as a figure of merit for therapeutic efficacy, analogous to the area under an ROC curve (AUROC), which is a figure of merit for diagnostic efficacy. In radiation therapy AUTOC can be computed for a single patient by using image data along with radiobiological models for tumor response and adverse side effects. In this paper we discuss the potential of using mathematical models of drug delivery and tumor response with imaging data to estimate AUTOC for chemotherapy, again for a single patient. This approach provides a basis for truly personalized therapy and for rigorously assessing and optimizing the therapy regimen for the particular patient. A key role is played by Emission Computed Tomography (PET or SPECT) of radiolabeled chemotherapy drugs.",
keywords = "Chemotherapy, Normal tissue complications, Personalized medicine, PET, Precision medicine, Radiation therapy, SPECT, Therapy operating characteristic, Tumor control",
author = "Barrett, {Harrison H.} and Alberts, {David S.} and Woolfenden, {James M.} and Zhonglin Liu and Luca Caucci and Hoppin, {John W.}",
note = "Publisher Copyright: {\textcopyright} 2015 SPIE. Copyright: Copyright 2018 Elsevier B.V., All rights reserved.; Medical Imaging 2015: Physics of Medical Imaging ; Conference date: 22-02-2015 Through 25-02-2015",
year = "2015",
doi = "10.1117/12.2189093",
language = "English (US)",
series = "Progress in Biomedical Optics and Imaging - Proceedings of SPIE",
publisher = "SPIE",
editor = "Christoph Hoeschen and Despina Kontos and Christoph Hoeschen",
booktitle = "Medical Imaging",
address = "United States",
}