Abstract
Biomaterial infection, a common cause of medical device failure, is initiated by bacterial adhesion to an adsorbed protein layer on the implant surface. This adhesion is thought to be mediated by specific molecules present on the bacterial cell surface. We have used optical tweezers to measure the adhesive force between a single bacterium and a protein-coated surface. A bacterium was optically trapped and brought in contact with a 10-μm diameter polystyrene microsphere coated with fibronectin. The minimum force required to detach the cell from the bead was determined over a range of fibronectin concentrations. The detachment forces were integer multiples of a 25-pN base value that was independent of coating concentration; we propose that the variation in force is related to the number of bonds formed.
Original language | English (US) |
---|---|
Title of host publication | Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings |
Pages | 2277-2278 |
Number of pages | 2 |
Volume | 3 |
State | Published - 2002 |
Event | Proceedings of the 2002 IEEE Engineering in Medicine and Biology 24th Annual Conference and the 2002 Fall Meeting of the Biomedical Engineering Society (BMES / EMBS) - Houston, TX, United States Duration: Oct 23 2002 → Oct 26 2002 |
Other
Other | Proceedings of the 2002 IEEE Engineering in Medicine and Biology 24th Annual Conference and the 2002 Fall Meeting of the Biomedical Engineering Society (BMES / EMBS) |
---|---|
Country/Territory | United States |
City | Houston, TX |
Period | 10/23/02 → 10/26/02 |
Keywords
- Bacterial adhesion
- Biofilm
- Extracellular matrix
- Infection
ASJC Scopus subject areas
- Bioengineering