TY - JOUR
T1 - Proton-dependent electron transfer from CuA to heme a and altered EPR spectra in mutants close to heme a of cytochrome oxidase
AU - Mills, Denise A.
AU - Xu, Shujuan
AU - Geren, Lois
AU - Hiser, Carrie
AU - Qin, Ling
AU - Sharpe, Martyn A.
AU - McCracken, John
AU - Durham, Bill
AU - Millett, Francis
AU - Ferguson-Miller, Shelagh
PY - 2008/11/4
Y1 - 2008/11/4
N2 - Eukaryotic cytochrome c oxidase (CcO) and homologous prokaryotic forms of Rhodobacter and Paraccocus differ in the EPR spectrum of heme a. It was noted that a histidine ligand of heme a (H102) is hydrogen bonded to serine in Rhodobacter (S44) and Paraccocus CcOs, in contrast to glycine in the bovine enzyme. Mutation of S44 to glycine shifts the heme a EPR signal from g z = 2.82 to 2.86, closer to bovine heme a at 3.03, without modifying other properties. Mutation to aspartate, however, results in an oppositely shifted and split heme a EPR signal of gz = 2.72/2.78, accompanied by lower activity and drastically inhibited intrinsic electron transfer from CuA to heme a. This intrinsic rate is biphasic; the proportion that is slow is pH dependent, as is the relative intensity of the two EPR signal components. At pH 8, the heme a EPR signal at 2.72 is most intense, and the electron transfer rate (CuA to heme a) is 10-130 s-1, compared to wild-type at 90000 s-1. At pH 5.5, the signal at 2.78 is intensified, and a biphasic rate is observed, 50% fast (∼wild type) and 50% slow (90 s-1). The data support the prediction that the hydrogen-bonding partner of the histidine ligand of heme a is one determinant of the EPR spectral difference between bovine and bacterial CcO. We further demonstrate that the heme a redox potential can be dramatically altered by a nearby carboxyl, whose protonation leads to a proton-coupled electron transfer process.
AB - Eukaryotic cytochrome c oxidase (CcO) and homologous prokaryotic forms of Rhodobacter and Paraccocus differ in the EPR spectrum of heme a. It was noted that a histidine ligand of heme a (H102) is hydrogen bonded to serine in Rhodobacter (S44) and Paraccocus CcOs, in contrast to glycine in the bovine enzyme. Mutation of S44 to glycine shifts the heme a EPR signal from g z = 2.82 to 2.86, closer to bovine heme a at 3.03, without modifying other properties. Mutation to aspartate, however, results in an oppositely shifted and split heme a EPR signal of gz = 2.72/2.78, accompanied by lower activity and drastically inhibited intrinsic electron transfer from CuA to heme a. This intrinsic rate is biphasic; the proportion that is slow is pH dependent, as is the relative intensity of the two EPR signal components. At pH 8, the heme a EPR signal at 2.72 is most intense, and the electron transfer rate (CuA to heme a) is 10-130 s-1, compared to wild-type at 90000 s-1. At pH 5.5, the signal at 2.78 is intensified, and a biphasic rate is observed, 50% fast (∼wild type) and 50% slow (90 s-1). The data support the prediction that the hydrogen-bonding partner of the histidine ligand of heme a is one determinant of the EPR spectral difference between bovine and bacterial CcO. We further demonstrate that the heme a redox potential can be dramatically altered by a nearby carboxyl, whose protonation leads to a proton-coupled electron transfer process.
UR - http://www.scopus.com/inward/record.url?scp=55249101965&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=55249101965&partnerID=8YFLogxK
U2 - 10.1021/bi801156s
DO - 10.1021/bi801156s
M3 - Article
C2 - 18847227
AN - SCOPUS:55249101965
SN - 0006-2960
VL - 47
SP - 11499
EP - 11509
JO - Biochemistry
JF - Biochemistry
IS - 44
ER -