Protein phosphatase 2A B55 and a regulatory subunits interact with nitrate reductase and are essential for nitrate reductase activation

Behzad Heidari, Polina Matre, Dugassa Nemie-Feyissa, Christian Meyer, Odd Arne Rognli, Simon G. Moller, Cathrine Lillo

Research output: Contribution to journalArticlepeer-review

57 Scopus citations


Posttranslational activation of nitrate reductase (NR) in Arabidopsis (Arabidopsis thaliana) and other higher plants is mediated by dephosphorylation at a specific Ser residue in the hinge between the molybdenum cofactor and heme-binding domains. The activation of NR in green leaves takes place after dark/light shifts, and is dependent on photosynthesis. Previous studies using various inhibitors pointed to protein phosphatases sensitive to okadaic acid, including protein phosphatase 2A (PP2A), as candidates for activation of NR. PP2As are heterotrimeric enzymes consisting of a catalytic (C), structural (A), and regulatory (B) subunit. In Arabidopsis there are five, three, and 18 of these subunits, respectively. By using inducible artificial microRNA to simultaneously knock down the three structural subunits we show that PP2A is necessary for NR activation. The structural subunits revealed overlapping functions in the activation process of NR. Bimolecular fluorescence complementation was used to identify PP2A regulatory subunits interacting with NR, and the two B55 subunits were positive. Interactions of NR and B55 were further confirmed by the yeast two-hybrid assay. In Arabidopsis the B55 group consists of the close homologs B55α and B55β. Interestingly, the homozygous double mutant (b55α × b55β) appeared to be lethal, which shows that the B55 group has essential functions that cannot be replaced by other regulatory subunits. Mutants homozygous for mutation in Bβ and heterozygous for mutation in Bα revealed a slower activation rate for NR than wild-type plants, pointing to these subunits as part of a PP2A complex responsible for NR dephosphorylation.

Original languageEnglish (US)
Pages (from-to)165-172
Number of pages8
JournalPlant Physiology
Issue number1
StatePublished - May 2011

ASJC Scopus subject areas

  • Physiology
  • Genetics
  • Plant Science


Dive into the research topics of 'Protein phosphatase 2A B55 and a regulatory subunits interact with nitrate reductase and are essential for nitrate reductase activation'. Together they form a unique fingerprint.

Cite this