TY - JOUR
T1 - Prostaglandin E2 stimulates a Ca2+-dependent K+ channel in human erythrocytes and alters cell volume and filterability
AU - Li, Qing
AU - Jungmann, Volker
AU - Kiyatkin, Anatoly
AU - Low, Philip S.
N1 - Copyright:
Copyright 2007 Elsevier B.V., All rights reserved.
PY - 1996
Y1 - 1996
N2 - To understand the mechanism by which human red blood cells (RBCs) contribute to hemostasis and thrombosis, we have examined the effects of metabolites released by activated platelets on intact RBCs. Prostaglandin E2 (PGE2), a signal molecule produced by activated platelets, was observed to lower the filterability of human erythrocytes by ~30% at 10-10 M. PGE2 also caused a reduction in mean cell volume of ~10%. The shrinkage of red cells after PGE2 treatment was confirmed by documenting a decrease in osmotic fragility and an increase in cell density following exposure to the hormone. Careful analysis, however, revealed that only ~15% of the erythrocytes responded to stimulation with PGE2. Examination of the cause of cell shrinkage showed that induction of a PGE2-stimulated K+ efflux pathway leading to rapid loss of cellular K+ was responsible. The PGE2-stimulated K+ loss was also observed to be Ca2+-dependent, suggesting the possible involvement of the Gardos channel. Gardos channel participation was supported by the observation that two Gardos channel inhibitors, charybdotoxin and clotrimazole, independently blocked the PGE2-stimulated K+ efflux. Further evidence for Gardos channel activation came from experiments aimed at characterizing the efflux pathway followed by the obligatory counterion. Thus, K+ efflux was readily stimulated even when NO3/- was substituted for Cl-, suggesting that neither KCl cotransport nor Na/K/2Cl cotransport plays a prominent role in the PGE2-induced cell shrinkage. Further, the anion transporter band 3 was implicated as the counterion efflux route, since DIDS inhibited the PGE2-stimulated cell volume change without blocking the change in membrane potential. Taken together, we propose that release of PGE2 by activated platelets constitutes part of a mechanism by which activated platelets may recruit adjacent erythrocytes to assist in clot formation.
AB - To understand the mechanism by which human red blood cells (RBCs) contribute to hemostasis and thrombosis, we have examined the effects of metabolites released by activated platelets on intact RBCs. Prostaglandin E2 (PGE2), a signal molecule produced by activated platelets, was observed to lower the filterability of human erythrocytes by ~30% at 10-10 M. PGE2 also caused a reduction in mean cell volume of ~10%. The shrinkage of red cells after PGE2 treatment was confirmed by documenting a decrease in osmotic fragility and an increase in cell density following exposure to the hormone. Careful analysis, however, revealed that only ~15% of the erythrocytes responded to stimulation with PGE2. Examination of the cause of cell shrinkage showed that induction of a PGE2-stimulated K+ efflux pathway leading to rapid loss of cellular K+ was responsible. The PGE2-stimulated K+ loss was also observed to be Ca2+-dependent, suggesting the possible involvement of the Gardos channel. Gardos channel participation was supported by the observation that two Gardos channel inhibitors, charybdotoxin and clotrimazole, independently blocked the PGE2-stimulated K+ efflux. Further evidence for Gardos channel activation came from experiments aimed at characterizing the efflux pathway followed by the obligatory counterion. Thus, K+ efflux was readily stimulated even when NO3/- was substituted for Cl-, suggesting that neither KCl cotransport nor Na/K/2Cl cotransport plays a prominent role in the PGE2-induced cell shrinkage. Further, the anion transporter band 3 was implicated as the counterion efflux route, since DIDS inhibited the PGE2-stimulated cell volume change without blocking the change in membrane potential. Taken together, we propose that release of PGE2 by activated platelets constitutes part of a mechanism by which activated platelets may recruit adjacent erythrocytes to assist in clot formation.
UR - http://www.scopus.com/inward/record.url?scp=0029666477&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0029666477&partnerID=8YFLogxK
U2 - 10.1074/jbc.271.31.18651
DO - 10.1074/jbc.271.31.18651
M3 - Article
C2 - 8702518
AN - SCOPUS:0029666477
SN - 0021-9258
VL - 271
SP - 18651
EP - 18656
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 31
ER -