TY - JOUR
T1 - Progestogens are metabolized by the gut microbiota
T2 - Implications for colonic drug delivery
AU - Coombes, Zoe
AU - Yadav, Vipul
AU - McCoubrey, Laura E.
AU - Freire, Cristina
AU - Basit, Abdul W.
AU - Conlan, R. Steven
AU - Gonzalez, Deyarina
N1 - Publisher Copyright:
© 2020 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2020/8/12
Y1 - 2020/8/12
N2 - Following oral administration, the bioavailability of progestogens is very low and highly variable, in part due to metabolism by cytochrome P450 enzymes found in the mucosa of the small intestine. Conversely, the mucosa in the colon contains much lower levels of cytochrome P450 enzymes, thus, colonic delivery of progestogens may be beneficial. Microbiota in the colon are known to metabolize a great number of drugs, therefore, it is important to understand the stability of these hormones in the presence of colonic flora before developing formulations. The aim of this study was to investigate the stability of three progestogens: progesterone, and its two synthetic analogues, medroxyprogesterone acetate (MPA) and levonorgestrel (LNG), in the presence of human colonic microbiota. Progesterone, MPA, and LNG were incubated in mixed fecal inoculum (simulated human colonic fluid) under anerobic conditions. Progesterone was completely degraded after 2 h, whereas levels of MPA and LNG were still detectable after 24 h. The half-lives of progesterone, MPA, and LNG in fecal inoculum were 28, 644 and 240 min, respectively. This study describes the kinetics of colonic microbial metabolism of these hormones for the first time. MPA and LNG show promise for delivery to the colon, potentially improving pharmacokinetics over current oral delivery methods.
AB - Following oral administration, the bioavailability of progestogens is very low and highly variable, in part due to metabolism by cytochrome P450 enzymes found in the mucosa of the small intestine. Conversely, the mucosa in the colon contains much lower levels of cytochrome P450 enzymes, thus, colonic delivery of progestogens may be beneficial. Microbiota in the colon are known to metabolize a great number of drugs, therefore, it is important to understand the stability of these hormones in the presence of colonic flora before developing formulations. The aim of this study was to investigate the stability of three progestogens: progesterone, and its two synthetic analogues, medroxyprogesterone acetate (MPA) and levonorgestrel (LNG), in the presence of human colonic microbiota. Progesterone, MPA, and LNG were incubated in mixed fecal inoculum (simulated human colonic fluid) under anerobic conditions. Progesterone was completely degraded after 2 h, whereas levels of MPA and LNG were still detectable after 24 h. The half-lives of progesterone, MPA, and LNG in fecal inoculum were 28, 644 and 240 min, respectively. This study describes the kinetics of colonic microbial metabolism of these hormones for the first time. MPA and LNG show promise for delivery to the colon, potentially improving pharmacokinetics over current oral delivery methods.
KW - Colonic stability
KW - Gastrointestinal bacteria
KW - Large intestine metabolism
KW - Levonorgestrel
KW - Medroxyprogesterone
KW - Microbiome
KW - Progesterone
KW - Steroids
UR - http://www.scopus.com/inward/record.url?scp=85089713882&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85089713882&partnerID=8YFLogxK
U2 - 10.3390/pharmaceutics12080760
DO - 10.3390/pharmaceutics12080760
M3 - Article
C2 - 32806503
AN - SCOPUS:85089713882
SN - 1999-4923
VL - 12
SP - 1
EP - 10
JO - Pharmaceutics
JF - Pharmaceutics
IS - 8
M1 - 760
ER -