Probabilistic segmentation of the lumen from intravascular ultrasound radio frequency data.

E. Gerardo Mendizabal-Ruiz, Ioannis A. Kakadiaris

Research output: Contribution to journalArticlepeer-review

6 Scopus citations


Intravascular ultrasound (IVUS) is a catheter-based medical imaging technique that produces cross-sectional images of blood vessels. In this paper, we present a method for the segmentation of the luminal border using IVUS radio frequency (RF) data. Specifically, we parameterize the lumen contour using Fourier series. This contour is deformed by minimizing a cost function that is formulated using a probabilistic approach in which the a priori term is obtained using the prediction confidence of a Support Vector Machine classifier using features extracted from the RF signal. We evaluated the performance of our method by comparing our results with manual segmentations from two expert observers on 280 frames from eight 40 MHz IVUS sequences from rabbits and pigs. The performance was evaluated using the Dice similarity coefficient, coefficient of determination, and linear regressions of the lumen area for each frame. Our results indicate the feasibility of our method for the segmentation of the lumen from IVUS RF data.

Original languageEnglish (US)
Pages (from-to)454-461
Number of pages8
JournalUnknown Journal
Issue numberPt 2
StatePublished - 2012

ASJC Scopus subject areas

  • Medicine(all)


Dive into the research topics of 'Probabilistic segmentation of the lumen from intravascular ultrasound radio frequency data.'. Together they form a unique fingerprint.

Cite this