Prevention of influenza-induced lung injury in mice overexpressing extracellular superoxide dismutase

Hagir B. Suliman, Lisa K. Ryan, Lisa Bishop, Rodney J. Folz

Research output: Contribution to journalArticlepeer-review

123 Scopus citations

Abstract

Reactive oxygen and nitrogen species such as superoxide and nitric oxide are released into the extracellular spaces by inflammatory and airway epithelial cells. These molecules may exacerbate lung injury after influenza virus pneumonia. We hypothesized that enhanced expression of extracellular superoxide dismutase (EC SOD) in mouse airways would attenuate the pathological effects of influenza pneumonia. We compared the pathogenic effects of a nonlethal primary infection with mouse-adapted Hong Kong influenza A/68 virus in transgenic (TG) EC SOD mice versus non-TG (wild-type) littermates. Compared with wild-type mice, EC SOD TG mice showed less lung injury and inflammation as measured by significant blunting of interferon-γ induction, reduced cell count and total protein in bronchoalveolar lavage fluid, reduced levels of lung nitrite/nitrate nitrotyrosine, and markedly reduced lung pathology. These results demonstrate that enhancing EC SOD in the conducting and distal airways of the lung minimizes influenza-induced lung injury by both ameliorating inflammation and attenuating oxidative stress.

Original languageEnglish (US)
Pages (from-to)L69-L78
JournalAmerican Journal of Physiology - Lung Cellular and Molecular Physiology
Volume280
Issue number1 24-1
DOIs
StatePublished - Jan 2001

Keywords

  • Antioxidants
  • Nitric oxide synthase
  • Transgenic mice

ASJC Scopus subject areas

  • Physiology
  • Pulmonary and Respiratory Medicine
  • Physiology (medical)
  • Cell Biology

Fingerprint

Dive into the research topics of 'Prevention of influenza-induced lung injury in mice overexpressing extracellular superoxide dismutase'. Together they form a unique fingerprint.

Cite this