TY - JOUR
T1 - Predicting the progression of MCI and Alzheimer’s disease on structural brain integrity and other features with machine learning
AU - for the Alzheimer’s Disease Neuroimaging Initiative
AU - Mieling, Marthe
AU - Yousuf, Mushfa
AU - Bunzeck, Nico
AU - Spicer, Kenneth
AU - Longmire, Crystal Flynn
AU - Mintzer, Jacobo
AU - Rojas, Yaneicy Gonazalez
AU - Sotelo, V.
AU - Hu, William
AU - Jones, Floyd
AU - Saklad, Amy
AU - Seshadri, Sudha
AU - Boegel, Amy
AU - Hill, Sydni Jenee
AU - Newhouse, Paul
AU - Long, Rebecca
AU - Long, Campbell
AU - Williams, Arthur
AU - Acree, Allison
AU - Brawman-Mintzer, Olga
AU - Reichert, Chelsea
AU - Pomara, Vita
AU - Hernando, Raymundo
AU - Pomara, Nunzio
AU - Acothley, Skieff
AU - Elayan, Nadeen
AU - Slaughter, Micah Ellis
AU - Garcia, Angelica
AU - Sabbagh, Marwan
AU - Gurung, Maushami
AU - Le, Richard
AU - Masdeu, Joseph
AU - Rosario, Christina
AU - Smith, Caroline
AU - Kalowsky, Teresa
AU - Rivera, Edgardo
AU - Okhravi, Hamid
AU - Devine, Rebecca
AU - Yong, Meagan
AU - Roglaski, Emily
AU - Janavs, Juris
AU - Echevarria, Jenny
AU - Mba, Ijeoma
AU - Smith, Amanda
AU - Miller, Bruce L.
AU - Rosen, Howard J.
AU - Blackburn, Morgan
AU - Windon, Charles
AU - Correia, Stephen
AU - Malloy, Paul
N1 - Publisher Copyright:
© The Author(s) 2025.
PY - 2025
Y1 - 2025
N2 - Machine learning (ML) on structural MRI data shows high potential for classifying Alzheimer’s disease (AD) progression, but the specific contribution of brain regions, demographics, and proteinopathy remains unclear. Using Alzheimer’s Disease Neuroimaging Initiative (ADNI) data, we applied an extreme gradient-boosting algorithm and SHAP (SHapley Additive exPlanations) values to classify cognitively normal (CN) older adults, those with mild cognitive impairment (MCI) and AD dementia patients. Features included structural MRI, CSF status, demographics, and genetic data. Analyses comprised one cross-sectional multi-class classification (CN vs. MCI vs. AD dementia, n = 568) and two longitudinal binary-class classifications (CN-to-MCI converters vs. CN stable, n = 92; MCI-to-AD converters vs. MCI stable, n = 378). All classifications achieved 70–77% accuracy and 61–83% precision. Key features were CSF status, hippocampal volume, entorhinal thickness, and amygdala volume, with a clear dissociation: hippocampal properties contributed to the conversion to MCI, while the entorhinal cortex characterized the conversion to AD dementia. The findings highlight explainable, trajectory-specific insights into AD progression.
AB - Machine learning (ML) on structural MRI data shows high potential for classifying Alzheimer’s disease (AD) progression, but the specific contribution of brain regions, demographics, and proteinopathy remains unclear. Using Alzheimer’s Disease Neuroimaging Initiative (ADNI) data, we applied an extreme gradient-boosting algorithm and SHAP (SHapley Additive exPlanations) values to classify cognitively normal (CN) older adults, those with mild cognitive impairment (MCI) and AD dementia patients. Features included structural MRI, CSF status, demographics, and genetic data. Analyses comprised one cross-sectional multi-class classification (CN vs. MCI vs. AD dementia, n = 568) and two longitudinal binary-class classifications (CN-to-MCI converters vs. CN stable, n = 92; MCI-to-AD converters vs. MCI stable, n = 378). All classifications achieved 70–77% accuracy and 61–83% precision. Key features were CSF status, hippocampal volume, entorhinal thickness, and amygdala volume, with a clear dissociation: hippocampal properties contributed to the conversion to MCI, while the entorhinal cortex characterized the conversion to AD dementia. The findings highlight explainable, trajectory-specific insights into AD progression.
KW - Alzheimer’s disease
KW - Classification
KW - Machine learning
KW - Magnetic resonance imaging
KW - Structural degeneration
UR - http://www.scopus.com/inward/record.url?scp=105003685601&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=105003685601&partnerID=8YFLogxK
U2 - 10.1007/s11357-025-01626-5
DO - 10.1007/s11357-025-01626-5
M3 - Article
AN - SCOPUS:105003685601
SN - 2509-2715
JO - GeroScience
JF - GeroScience
ER -