prDeep: Robust phase retrieval with a flexible deep network

Christopher A. Metzler, Philip Schniter, Ashok Veeraraghavan, Richard G. Baraniuk

Research output: Chapter in Book/Report/Conference proceedingConference contribution

11 Scopus citations

Abstract

Phase retrieval algorithms have become an important component in many modern computational imaging systems. For instance, in the context of ptychography and speckle correlation imaging, they enable imaging past the diffraction limit and through scattering media, respectively. Unfortunately, traditional phase retrieval algorithms struggle in the presence of noise. Progress has been made recently on more robust algorithms using signal priors, but at the expense of limiting the range of supported measurement models (e.g., to Gaussian or coded diffraction patterns). In this work we leverage the regularization-by-denoising framework and a convolutional neural network denoiser to create prDeep, a new phase retrieval algorithm that is both robust and broadly applicable. We test and validate prDeep in simulation to demonstrate that it is robust to noise and can handle a variety of system models.

Original languageEnglish (US)
Title of host publication35th International Conference on Machine Learning, ICML 2018
EditorsJennifer Dy, Andreas Krause
PublisherInternational Machine Learning Society (IMLS)
Pages5654-5663
Number of pages10
ISBN (Electronic)9781510867963
StatePublished - 2018
Event35th International Conference on Machine Learning, ICML 2018 - Stockholm, Sweden
Duration: Jul 10 2018Jul 15 2018

Publication series

Name35th International Conference on Machine Learning, ICML 2018
Volume8

Other

Other35th International Conference on Machine Learning, ICML 2018
CountrySweden
CityStockholm
Period7/10/187/15/18

ASJC Scopus subject areas

  • Computational Theory and Mathematics
  • Human-Computer Interaction
  • Software

Fingerprint Dive into the research topics of 'prDeep: Robust phase retrieval with a flexible deep network'. Together they form a unique fingerprint.

Cite this