Phosphine-free synthesis of high-quality reverse type-I ZnSe/CdSe core with CdS/CdxZn1 - XS/ZnS multishell nanocrystals and their application for detection of human hepatitis B surface antigen

Huaibin Shen, Hang Yuan, Jin Zhong Niu, Shasha Xu, Changhua Zhou, Lan Ma, Lin Song Li

Research output: Contribution to journalArticlepeer-review

28 Scopus citations

Abstract

Highly photoluminescent (PL) reverse type-I ZnSe/CdSe nanocrystals (NCs) and ZnSe/CdSe/CdS/CdxZn1 - xS/ZnS core/multishell NCs were successfully synthesized by a phosphine-free method. By this low-cost, 'green' synthesis route, more than 10g of high-quality ZnSe/CdSe/CdS/Cd xZn1 - xS/ZnS NCs were synthesized in a large scale synthesis. After the overgrowth of a CdS/CdxZn1 - xS/ZnS multishell on ZnSe/CdSe cores, the PL quantum yields (QYs) increased from 28% to 75% along with the stability improvement. An amphiphilic oligomer was used as a surface coating agent to conduct a phase transfer experiment, core/multishell NCs were dissolved in water by such surface modification and the QYs were still kept above 70%. The as-prepared water dispersible ZnSe/CdSe/CdS/Cd xZn1 - xS/ZnS core/multishell NCs not only have high fluorescence QYs but also are extremely stable in various physiological conditions. Furthermore, a biosensor system (lateral flow immunoassay system, LFIA) for the detection of human hepatitis B surface antigen (HBsAg) was developed by using this water-soluble core/multishell NCs as a fluorescent label and a nitrocellulose filter membrane for lateral flow. The result showed that such ZnSe/CdSe/CdS/CdxZn1 - xS/ZnS core/multishell NCs were excellent fluorescent labels to detect HBsAg. The sensitivity of HBsAg detection could reach as high as 0.05ngml- 1.

Original languageEnglish (US)
Article number375602
JournalNanotechnology
Volume22
Issue number37
DOIs
StatePublished - Sep 16 2011

ASJC Scopus subject areas

  • Bioengineering
  • Chemistry(all)
  • Materials Science(all)
  • Mechanics of Materials
  • Mechanical Engineering
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Phosphine-free synthesis of high-quality reverse type-I ZnSe/CdSe core with CdS/CdxZn1 - XS/ZnS multishell nanocrystals and their application for detection of human hepatitis B surface antigen'. Together they form a unique fingerprint.

Cite this