TY - JOUR
T1 - Performance of three measures of Comorbidity in predicting critical covid-19
T2 - A retrospective analysis of 4607 hospitalized patients
AU - Monterde, David
AU - Carot-Sans, Gerard
AU - Cainzos-Achirica, Miguel
AU - Abilleira, Sònia
AU - Coca, Marc
AU - Vela, Emili
AU - Clèries, Montse
AU - Valero-Bover, Damià
AU - Comin-Colet, Josep
AU - García-Eroles, Luis
AU - Pérez-Sust, Pol
AU - Arrufat, Miquel
AU - Lejardi, Yolanda
AU - Piera-Jiménez, Jordi
N1 - Publisher Copyright:
© 2021 Monterde et al.
PY - 2021
Y1 - 2021
N2 - Background: Comorbidity burden has been identified as a relevant predictor of critical illness in patients hospitalized with coronavirus disease 2019 (COVID-19). However, comorbidity burden is often represented by a simple count of few conditions that may not fully capture patients’ complexity. Purpose: To evaluate the performance of a comprehensive index of the comorbidity burden (Queralt DxS), which includes all chronic conditions present on admission, as an adjustment variable in models for predicting critical illness in hospitalized COVID-19 patients and compare it with two broadly used measures of comorbidity. Materials and Methods: We analyzed data from all COVID-19 hospitalizations reported in eight public hospitals in Catalonia (North-East Spain) between June 15 and December 8 2020. The primary outcome was a composite of critical illness that included the need for invasive mechanical ventilation, transfer to ICU, or in-hospital death. Predictors including age, sex, and comorbidities present on admission measured using three indices: The Charlson index, the Elixhauser index, and the Queralt DxS index for comorbidities on admission. The performance of different fitted models was compared using various indicators, including the area under the receiver operating characteristics curve (AUROCC). Results: Our analysis included 4607 hospitalized COVID-19 patients. Of them, 1315 experienced critical illness. Comorbidities significantly contributed to predicting the outcome in all summary indices used. AUC (95% CI) for prediction of critical illness was 0.641 (0.624-0.660) for the Charlson index, 0.665 (0.645-0.681) for the Elixhauser index, and 0.787 (0.773-0.801) for the Queralt DxS index. Other metrics of model performance also showed Queralt DxS being consistently superior to the other indices. Conclusion: In our analysis, the ability of comorbidity indices to predict critical illness in hospitalized COVID-19 patients increased with their exhaustivity. The comprehensive Queralt DxS index may improve the accuracy of predictive models for resource allocation and clinical decision-making in the hospital setting.
AB - Background: Comorbidity burden has been identified as a relevant predictor of critical illness in patients hospitalized with coronavirus disease 2019 (COVID-19). However, comorbidity burden is often represented by a simple count of few conditions that may not fully capture patients’ complexity. Purpose: To evaluate the performance of a comprehensive index of the comorbidity burden (Queralt DxS), which includes all chronic conditions present on admission, as an adjustment variable in models for predicting critical illness in hospitalized COVID-19 patients and compare it with two broadly used measures of comorbidity. Materials and Methods: We analyzed data from all COVID-19 hospitalizations reported in eight public hospitals in Catalonia (North-East Spain) between June 15 and December 8 2020. The primary outcome was a composite of critical illness that included the need for invasive mechanical ventilation, transfer to ICU, or in-hospital death. Predictors including age, sex, and comorbidities present on admission measured using three indices: The Charlson index, the Elixhauser index, and the Queralt DxS index for comorbidities on admission. The performance of different fitted models was compared using various indicators, including the area under the receiver operating characteristics curve (AUROCC). Results: Our analysis included 4607 hospitalized COVID-19 patients. Of them, 1315 experienced critical illness. Comorbidities significantly contributed to predicting the outcome in all summary indices used. AUC (95% CI) for prediction of critical illness was 0.641 (0.624-0.660) for the Charlson index, 0.665 (0.645-0.681) for the Elixhauser index, and 0.787 (0.773-0.801) for the Queralt DxS index. Other metrics of model performance also showed Queralt DxS being consistently superior to the other indices. Conclusion: In our analysis, the ability of comorbidity indices to predict critical illness in hospitalized COVID-19 patients increased with their exhaustivity. The comprehensive Queralt DxS index may improve the accuracy of predictive models for resource allocation and clinical decision-making in the hospital setting.
KW - COVID-19
KW - Comorbidity
KW - Hospitalization
KW - Multimorbidity
KW - Risk
UR - http://www.scopus.com/inward/record.url?scp=85120811411&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85120811411&partnerID=8YFLogxK
U2 - 10.2147/RMHP.S326132
DO - 10.2147/RMHP.S326132
M3 - Article
AN - SCOPUS:85120811411
SN - 1179-1594
VL - 14
SP - 4729
EP - 4737
JO - Risk Management and Healthcare Policy
JF - Risk Management and Healthcare Policy
ER -