TY - JOUR
T1 - Peptide analogs to a fibronectin receptor inhibit attachment of Staphylococcus aureus to fibronectin-containing substrates
AU - Raja, R. H.
AU - Raucci, G.
AU - Hook, M.
N1 - Copyright:
Copyright 2004 Elsevier B.V., All rights reserved.
PY - 1990
Y1 - 1990
N2 - Binding of cells of Staphylococcus aureus to fibronectin has been proposed as a mechanism of bacterial adhesion to host tissues. In this study, we have attempted to define the role of a recently identified fibronectin receptor in the adhesion of staphylococcal cells to fibronectin-containing substrates by using different receptor analogs as potential inhibitors of bacterial adherence. The results showed that synthetic peptides D1, D2, and D3, corresponding to variations of a repeated unit in the fibronectin-binding domain of the receptor, and ZZ-FR, a chimeric protein containing the fibronectin-binding domain of the receptor with the D1, D2, and D3 sequences, inhibited the attachment of staphylococcal cells to microtiter wells coated with intact fibronectin or with the 29-kilodalton amino-terminal fragment of fibronectin. The chimeric protein ZZ-FR also partially inhibited the adherence of staphylococci to human plasma clots formed in vitro but had no effect on bacterial adhesion to clots formed from fibronectin-depleted plasma. These data confirm previous reports suggesting that fibronectin may serve as a substrate for adhesion of staphylococcal cells and indicate that bacterial adhesion is mediated by the identified fibronectin receptor. Furthermore, analogs to the fibronectin receptor can be used to inhibit the adhesion of bacterial cells to these model substrates, and these analogs may be of clinical use.
AB - Binding of cells of Staphylococcus aureus to fibronectin has been proposed as a mechanism of bacterial adhesion to host tissues. In this study, we have attempted to define the role of a recently identified fibronectin receptor in the adhesion of staphylococcal cells to fibronectin-containing substrates by using different receptor analogs as potential inhibitors of bacterial adherence. The results showed that synthetic peptides D1, D2, and D3, corresponding to variations of a repeated unit in the fibronectin-binding domain of the receptor, and ZZ-FR, a chimeric protein containing the fibronectin-binding domain of the receptor with the D1, D2, and D3 sequences, inhibited the attachment of staphylococcal cells to microtiter wells coated with intact fibronectin or with the 29-kilodalton amino-terminal fragment of fibronectin. The chimeric protein ZZ-FR also partially inhibited the adherence of staphylococci to human plasma clots formed in vitro but had no effect on bacterial adhesion to clots formed from fibronectin-depleted plasma. These data confirm previous reports suggesting that fibronectin may serve as a substrate for adhesion of staphylococcal cells and indicate that bacterial adhesion is mediated by the identified fibronectin receptor. Furthermore, analogs to the fibronectin receptor can be used to inhibit the adhesion of bacterial cells to these model substrates, and these analogs may be of clinical use.
UR - http://www.scopus.com/inward/record.url?scp=0025285022&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0025285022&partnerID=8YFLogxK
M3 - Article
C2 - 2142481
AN - SCOPUS:0025285022
SN - 0019-9567
VL - 58
SP - 2593
EP - 2598
JO - Infection and Immunity
JF - Infection and Immunity
IS - 8
ER -