TY - JOUR
T1 - PAS-mediated dimerization of soluble guanylyl cyclase revealed by signal transduction histidine kinase domain crystal structure
AU - Ma, Xiaolei
AU - Sayed, Nazish
AU - Baskaran, Padmamalini
AU - Beuve, Annie
AU - Van Den Akker, Focco
PY - 2008/1/11
Y1 - 2008/1/11
N2 - Signal transduction histidine kinases (STHK) are key for sensing environmental stresses, crucial for cell survival, and attain their sensing ability using small molecule binding domains. The N-terminal domain in an STHK from Nostoc punctiforme is of unknown function yet is homologous to the central region in soluble guanylyl cyclase (sGC), the main receptor for nitric oxide (NO). This domain is termed H-NOXA (or H-NOBA) because it is often associated with the heme-nitric oxide/oxygen binding (H-NOX) domain. A structure-function approach was taken to investigate the role of H-NOXA in STHK and sGC. We report the 2.1 Å resolution crystal structure of the dimerized H-NOXA domain of STHK, which reveals a Per-Arnt-Sim (PAS) fold. The H-NOXA monomers dimerize in a parallel arrangement juxtaposing their N-terminal helices and preceding residues. Such PAS dimerization is similar to that previously observed for EcDOS, AvNifL, and RmFixL. Deletion of 7 N-terminal residues affected dimer organization. Alanine scanning mutagenesis in sGC indicates that the H-NOXA domains of sGC could adopt a similar dimer organization. Although most putative interface mutations did decrease sGCα1 H-NOXA homodimerization, heterodimerization of full-length heterodimeric sGC was mostly unaffected, likely due to the additional dimerization contacts of sGC in the coiled-coil and catalytic domains. Exceptions are mutations sGCα1 F285A and sGCβ1 F217A, which each caused a drastic drop in NO stimulated activity, and mutations sGCα1 Q368A and sGCβ1 Q309A, which resulted in both a complete lack of activity and heterodimerization. Our structural and mutational results provide new insights into sGC and STHK dimerization and overall architecture.
AB - Signal transduction histidine kinases (STHK) are key for sensing environmental stresses, crucial for cell survival, and attain their sensing ability using small molecule binding domains. The N-terminal domain in an STHK from Nostoc punctiforme is of unknown function yet is homologous to the central region in soluble guanylyl cyclase (sGC), the main receptor for nitric oxide (NO). This domain is termed H-NOXA (or H-NOBA) because it is often associated with the heme-nitric oxide/oxygen binding (H-NOX) domain. A structure-function approach was taken to investigate the role of H-NOXA in STHK and sGC. We report the 2.1 Å resolution crystal structure of the dimerized H-NOXA domain of STHK, which reveals a Per-Arnt-Sim (PAS) fold. The H-NOXA monomers dimerize in a parallel arrangement juxtaposing their N-terminal helices and preceding residues. Such PAS dimerization is similar to that previously observed for EcDOS, AvNifL, and RmFixL. Deletion of 7 N-terminal residues affected dimer organization. Alanine scanning mutagenesis in sGC indicates that the H-NOXA domains of sGC could adopt a similar dimer organization. Although most putative interface mutations did decrease sGCα1 H-NOXA homodimerization, heterodimerization of full-length heterodimeric sGC was mostly unaffected, likely due to the additional dimerization contacts of sGC in the coiled-coil and catalytic domains. Exceptions are mutations sGCα1 F285A and sGCβ1 F217A, which each caused a drastic drop in NO stimulated activity, and mutations sGCα1 Q368A and sGCβ1 Q309A, which resulted in both a complete lack of activity and heterodimerization. Our structural and mutational results provide new insights into sGC and STHK dimerization and overall architecture.
UR - http://www.scopus.com/inward/record.url?scp=38149078912&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=38149078912&partnerID=8YFLogxK
U2 - 10.1074/jbc.M706218200
DO - 10.1074/jbc.M706218200
M3 - Article
C2 - 18006497
AN - SCOPUS:38149078912
SN - 0021-9258
VL - 283
SP - 1167
EP - 1178
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 2
ER -